1 | #include "logger.h"
|
---|
2 |
|
---|
3 | #include "stb_image.h"
|
---|
4 |
|
---|
5 | #define _USE_MATH_DEFINES
|
---|
6 | #define GLM_SWIZZLE
|
---|
7 |
|
---|
8 | #include <glm/mat4x4.hpp>
|
---|
9 | #include <glm/gtc/matrix_transform.hpp>
|
---|
10 | #include <glm/gtc/type_ptr.hpp>
|
---|
11 |
|
---|
12 | #include <GL/glew.h>
|
---|
13 | #include <GLFW/glfw3.h>
|
---|
14 |
|
---|
15 | #include <cstdio>
|
---|
16 | #include <iostream>
|
---|
17 | #include <fstream>
|
---|
18 | #include <cmath>
|
---|
19 | #include <string>
|
---|
20 | #include <array>
|
---|
21 |
|
---|
22 | using namespace std;
|
---|
23 | using namespace glm;
|
---|
24 |
|
---|
25 | #define ONE_DEG_IN_RAD (2.0 * M_PI) / 360.0 // 0.017444444
|
---|
26 |
|
---|
27 | const bool FULLSCREEN = false;
|
---|
28 | int width = 640;
|
---|
29 | int height = 480;
|
---|
30 |
|
---|
31 | vec3 cam_pos;
|
---|
32 |
|
---|
33 | array<vec3, 3> triangle_face;
|
---|
34 |
|
---|
35 | array<vec3,3> colored_triangle;
|
---|
36 | array<vec3, 3> square_triangle1;
|
---|
37 | array<vec3, 3> square_triangle2;
|
---|
38 |
|
---|
39 | bool clicked = false;
|
---|
40 | int colors_i = 0;
|
---|
41 |
|
---|
42 | bool clicked_square = false;
|
---|
43 |
|
---|
44 | mat4 model_mat;
|
---|
45 | mat4 model_mat2;
|
---|
46 |
|
---|
47 | mat4 view_mat;
|
---|
48 | mat4 proj_mat;
|
---|
49 |
|
---|
50 | bool insideTriangle(vec3 p, array<vec3, 3> triangle);
|
---|
51 |
|
---|
52 | GLuint loadShader(GLenum type, string file);
|
---|
53 | GLuint loadShaderProgram(string vertexShaderPath, string fragmentShaderPath);
|
---|
54 | unsigned char* loadImage(string file_name, int* x, int* y);
|
---|
55 |
|
---|
56 | void printVector(string label, vec3 v);
|
---|
57 |
|
---|
58 | float NEAR_CLIP = 0.1f;
|
---|
59 | float FAR_CLIP = 100.0f;
|
---|
60 |
|
---|
61 | void glfw_error_callback(int error, const char* description) {
|
---|
62 | gl_log_err("GLFW ERROR: code %i msg: %s\n", error, description);
|
---|
63 | }
|
---|
64 |
|
---|
65 | void mouse_button_callback(GLFWwindow* window, int button, int action, int mods) {
|
---|
66 | double mouse_x, mouse_y;
|
---|
67 | glfwGetCursorPos(window, &mouse_x, &mouse_y);
|
---|
68 |
|
---|
69 | if (button == GLFW_MOUSE_BUTTON_LEFT && action == GLFW_PRESS) {
|
---|
70 | cout << "Mouse clicked (" << mouse_x << "," << mouse_y << ")" << endl;
|
---|
71 |
|
---|
72 | float x = (2.0f*mouse_x) / width - 1.0f;
|
---|
73 | float y = 1.0f - (2.0f*mouse_y) / height;
|
---|
74 | cout << "x: " << x << ", y: " << y << endl;
|
---|
75 |
|
---|
76 | // Since the projection matrix gets applied before the view matrix,
|
---|
77 | // treat the initial camera position (aka origin of the ray) as (0, 0, 0)
|
---|
78 |
|
---|
79 | // When getting the ray direction, you can use near and fov to get the
|
---|
80 | // coordinates
|
---|
81 |
|
---|
82 | vec4 ray_clip = vec4(x, y, -1.0f, 1.0f); // this should have a z equal to the near clipping plane
|
---|
83 | vec4 ray_eye = inverse(proj_mat) * ray_clip;
|
---|
84 | ray_eye = vec4(ray_eye.xy(), -1.0f, 0.0f);
|
---|
85 | vec3 ray_world = normalize((inverse(view_mat) * ray_eye).xyz());
|
---|
86 |
|
---|
87 | /* LATEST NOTES:
|
---|
88 | *
|
---|
89 | * Normalizing the world ray caused issues, although it should make sense with the projection
|
---|
90 | * matrix, since the z coordinate has meaning there.
|
---|
91 | *
|
---|
92 | * Now, I need to figure out the correct intersection test in 2D space
|
---|
93 | * Also, need to check that the global triangle points are correct
|
---|
94 | */
|
---|
95 |
|
---|
96 | // since ray_world is the end result we want anyway, we probably don't need to add cam_pos to
|
---|
97 | // it, only to subtract it later
|
---|
98 |
|
---|
99 | vec3 click_point = cam_pos + ray_world;
|
---|
100 |
|
---|
101 | /* Now, we need to generate the constants for the equations describing
|
---|
102 | * a 3D line:
|
---|
103 | * (x - x0) / a = (y - y0) / b = (z - z0) / c
|
---|
104 | *
|
---|
105 | * The line goes through the camera position, so
|
---|
106 | * cam_pos = <x0, y0, z0>
|
---|
107 | */
|
---|
108 |
|
---|
109 | // upper right corner is 1, 1 in opengl
|
---|
110 |
|
---|
111 | cout << "Converted -> (" << ray_world.x << "," << ray_world.y << "," << ray_world.z << ")" << endl << endl;;
|
---|
112 | cout << "Camera -> (" << cam_pos.x << "," << cam_pos.y << "," << cam_pos.z << ")" << endl;
|
---|
113 | cout << "Click point -> (" << click_point.x << "," << click_point.y << "," << click_point.z << ")" << endl;
|
---|
114 |
|
---|
115 | float a = 1.0f;
|
---|
116 | float b = a * (click_point.y - cam_pos.y) / (click_point.x - cam_pos.x);
|
---|
117 | float c = a * (click_point.z - cam_pos.z) / (click_point.x - cam_pos.x);
|
---|
118 |
|
---|
119 | cout << "(x - " << cam_pos.x << ") / " << a << " = ";
|
---|
120 | cout << "(y - " << cam_pos.y << ") / " << b << " = ";
|
---|
121 | cout << "(z - " << cam_pos.z << ") / " << c << endl;;
|
---|
122 |
|
---|
123 | /* Now, we need to generate the constants for the equations describing
|
---|
124 | * a 3D plane:
|
---|
125 | * dx + ey +fz +g = 0
|
---|
126 | */
|
---|
127 |
|
---|
128 | vec3 fp1 = triangle_face[0];
|
---|
129 | vec3 fp2 = triangle_face[1];
|
---|
130 | vec3 fp3 = triangle_face[2];
|
---|
131 |
|
---|
132 | cout << "Points on the plane" << endl;
|
---|
133 | cout << "(" << fp1.x << ", " << fp1.y << ", " << fp1.z << ")" << endl;
|
---|
134 | cout << "(" << fp2.x << ", " << fp2.y << ", " << fp2.z << ")" << endl;
|
---|
135 | cout << "(" << fp3.x << ", " << fp3.y << ", " << fp3.z << ")" << endl;
|
---|
136 |
|
---|
137 | float pa = (fp2.y-fp1.y)*(fp3.z-fp1.z) - (fp3.y-fp1.y)*(fp2.z-fp1.z);
|
---|
138 | float pb = (fp2.z-fp1.z)*(fp3.x-fp1.x) - (fp3.z-fp1.z)*(fp2.x-fp1.x);
|
---|
139 | float pc = (fp2.x-fp1.x)*(fp3.y-fp1.y) - (fp3.x-fp1.x)*(fp2.y-fp1.y);
|
---|
140 | float pd = -(pa*fp1.x+pb*fp1.y+pc*fp1.z);
|
---|
141 |
|
---|
142 | cout << pa << "x+" << pb << "y+" << pc << "z+" << pd << "=0" << endl;
|
---|
143 |
|
---|
144 | // get intersection
|
---|
145 |
|
---|
146 | // the intersection this computes is incorrect
|
---|
147 | // it doesn't match the equation of the plane
|
---|
148 | vec3 i;
|
---|
149 | i.z = -cam_pos.z - pc*pd/(pa*a+pb*b);
|
---|
150 | i.x = cam_pos.x + a * (i.z-cam_pos.z) / c;
|
---|
151 | i.y = cam_pos.y + b * (i.z-cam_pos.z) / c;
|
---|
152 |
|
---|
153 | cout << "The holy grail?" << endl;
|
---|
154 | cout << "(" << i.x << "," << i.y << "," << i.z << ")" << endl;
|
---|
155 |
|
---|
156 | clicked = insideTriangle(i, triangle_face);
|
---|
157 | cout << (clicked ? "true" : "false") << endl;
|
---|
158 | }
|
---|
159 | }
|
---|
160 |
|
---|
161 | /* REFACTORING PLAN:
|
---|
162 | *
|
---|
163 | * Have an array of object structs
|
---|
164 | * Each object struct has:
|
---|
165 | * -a model matrix
|
---|
166 | * -a selected boolean
|
---|
167 | * Eventually, maybe also want to store a reference to the correct shader
|
---|
168 | * or whatever other info I need to properly render it
|
---|
169 | *
|
---|
170 | * Have an array of face structs
|
---|
171 | * Each face struct has
|
---|
172 | * -an object index indicating which object it is a part of
|
---|
173 | * -an array of three points
|
---|
174 | *
|
---|
175 | * The mouse button callback will:
|
---|
176 | * -Set all selected flags in the objects array to false
|
---|
177 | * -iterate through the faces array
|
---|
178 | * -For each face, it will call faceClicked() with the following params:
|
---|
179 | * -Probably a world ray created from the mouse click coordinates
|
---|
180 | * -An array of 3 points representing the face
|
---|
181 | * -The object struct represnting the object the face is a part of
|
---|
182 | */
|
---|
183 |
|
---|
184 | void mouse_button_callback_new(GLFWwindow* window, int button, int action, int mods) {
|
---|
185 | double mouse_x, mouse_y;
|
---|
186 | glfwGetCursorPos(window, &mouse_x, &mouse_y);
|
---|
187 |
|
---|
188 | if (button == GLFW_MOUSE_BUTTON_LEFT && action == GLFW_PRESS) {
|
---|
189 | cout << "Mouse clicked (" << mouse_x << "," << mouse_y << ")" << endl;
|
---|
190 |
|
---|
191 | float x = (2.0f*mouse_x) / width - 1.0f;
|
---|
192 | float y = 1.0f - (2.0f*mouse_y) / height;
|
---|
193 |
|
---|
194 | cout << "x: " << x << ", y: " << y << endl;
|
---|
195 |
|
---|
196 | // Since the projection matrix gets applied before the view matrix,
|
---|
197 | // treat the initial camera position (aka origin of the ray) as (0, 0, 0)
|
---|
198 |
|
---|
199 | // When getting the ray direction, you can use near and fov to get the
|
---|
200 | // coordinates
|
---|
201 |
|
---|
202 | // vec4 ray_clip = vec4(x, y, -1.0f, 1.0f); // this should have a z equal to the near clipping plane
|
---|
203 | // vec4 ray_eye = inverse(proj_mat) * ray_clip;
|
---|
204 | // ray_eye = vec4(ray_eye.xy(), -1.0f, 0.0f);
|
---|
205 | // vec3 ray_world = normalize((inverse(view_mat) * ray_eye).xyz());
|
---|
206 |
|
---|
207 | vec4 ray_clip = vec4(x, y, NEAR_CLIP, 1.0f); // this should have a z equal to the near clipping plane
|
---|
208 | vec4 ray_eye = ray_clip;
|
---|
209 | vec3 ray_world = (inverse(model_mat) * inverse(view_mat) * ray_eye).xyz();
|
---|
210 |
|
---|
211 | /* LATEST NOTES:
|
---|
212 | *
|
---|
213 | * Normalizing the world ray caused issues, although it should make sense with the projection
|
---|
214 | * matrix, since the z coordinate has meaning there.
|
---|
215 | * Plus, we really want to normalize it only once we recompute it below as the difference of two points,
|
---|
216 | * although doing so shouldn't effect the results. Check the book to see if there is a good reason for doing so.
|
---|
217 | */
|
---|
218 |
|
---|
219 | printVector("Initial world ray:", ray_world);
|
---|
220 |
|
---|
221 | vec4 cam_pos_origin = vec4(x, y, 0.0f, 1.0f);
|
---|
222 | vec3 cam_pos_temp = (inverse(model_mat) * inverse(view_mat) * cam_pos_origin).xyz();
|
---|
223 |
|
---|
224 | ray_world = ray_world-cam_pos_temp;
|
---|
225 |
|
---|
226 | cout << "Ray clip -> (" << ray_clip.x << "," << ray_clip.y << "," << ray_clip.z << ")" << endl << endl;;
|
---|
227 | cout << "Ray world -> (" << ray_world.x << "," << ray_world.y << "," << ray_world.z << ")" << endl << endl;;
|
---|
228 | cout << "Camera -> (" << cam_pos_temp.x << "," << cam_pos_temp.y << "," << cam_pos_temp.z << ")" << endl;
|
---|
229 |
|
---|
230 | vec3 fp1 = triangle_face[0];
|
---|
231 | vec3 fp2 = triangle_face[1];
|
---|
232 | vec3 fp3 = triangle_face[2];
|
---|
233 |
|
---|
234 | cout << "Points on the plane" << endl;
|
---|
235 | cout << "(" << fp1.x << ", " << fp1.y << ", " << fp1.z << ")" << endl;
|
---|
236 | cout << "(" << fp2.x << ", " << fp2.y << ", " << fp2.z << ")" << endl;
|
---|
237 | cout << "(" << fp3.x << ", " << fp3.y << ", " << fp3.z << ")" << endl;
|
---|
238 |
|
---|
239 | // LINE EQUATION: P = O + Dt
|
---|
240 | // O = cam_pos
|
---|
241 | // D = ray_world
|
---|
242 |
|
---|
243 | // PLANE EQUATION: P dot n + d = 0 (n is the normal vector and d is the offset from the origin)
|
---|
244 |
|
---|
245 | // Take the cross-product of two vectors on the plane to get the normal
|
---|
246 | vec3 v1 = fp2 - fp1;
|
---|
247 | vec3 v2 = fp3 - fp1;
|
---|
248 |
|
---|
249 | vec3 normal = vec3(v1.y*v2.z-v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x);
|
---|
250 | printVector("v1", v1);
|
---|
251 | printVector("v2", v2);
|
---|
252 | printVector("Cross", normal);
|
---|
253 | cout << "Test theory: " << glm::dot(cam_pos_temp, normal) << endl;
|
---|
254 | cout << "Test 2: " << glm::dot(ray_world, normal) << endl;
|
---|
255 |
|
---|
256 | float d = -glm::dot(fp1, normal);
|
---|
257 | cout << "d: " << d << endl;
|
---|
258 |
|
---|
259 | float t = - (glm::dot(cam_pos_temp, normal) + d) / glm::dot(ray_world, normal);
|
---|
260 | cout << "t: " << t << endl;
|
---|
261 |
|
---|
262 | vec3 intersection = cam_pos_temp+t*ray_world;
|
---|
263 | printVector("Intersection", intersection);
|
---|
264 |
|
---|
265 | clicked = insideTriangle(intersection, triangle_face);
|
---|
266 | cout << (clicked ? "true" : "false") << endl;
|
---|
267 |
|
---|
268 | clicked_square = !clicked_square;
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | int main(int argc, char* argv[]) {
|
---|
273 | cout << "New OpenGL Game" << endl;
|
---|
274 |
|
---|
275 | if (!restart_gl_log()) {}
|
---|
276 | gl_log("starting GLFW\n%s\n", glfwGetVersionString());
|
---|
277 |
|
---|
278 | glfwSetErrorCallback(glfw_error_callback);
|
---|
279 | if (!glfwInit()) {
|
---|
280 | fprintf(stderr, "ERROR: could not start GLFW3\n");
|
---|
281 | return 1;
|
---|
282 | }
|
---|
283 |
|
---|
284 | #ifdef __APPLE__
|
---|
285 | glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
---|
286 | glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
---|
287 | glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
|
---|
288 | glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
---|
289 | #endif
|
---|
290 |
|
---|
291 | glfwWindowHint(GLFW_SAMPLES, 4);
|
---|
292 |
|
---|
293 | GLFWwindow* window = NULL;
|
---|
294 |
|
---|
295 | if (FULLSCREEN) {
|
---|
296 | GLFWmonitor* mon = glfwGetPrimaryMonitor();
|
---|
297 | const GLFWvidmode* vmode = glfwGetVideoMode(mon);
|
---|
298 |
|
---|
299 | cout << "Fullscreen resolution " << vmode->width << "x" << vmode->height << endl;
|
---|
300 | window = glfwCreateWindow(vmode->width, vmode->height, "Extended GL Init", mon, NULL);
|
---|
301 |
|
---|
302 | width = vmode->width;
|
---|
303 | height = vmode->height;
|
---|
304 | } else {
|
---|
305 | window = glfwCreateWindow(width, height, "Hello Triangle", NULL, NULL);
|
---|
306 | }
|
---|
307 |
|
---|
308 | if (!window) {
|
---|
309 | fprintf(stderr, "ERROR: could not open window with GLFW3\n");
|
---|
310 | glfwTerminate();
|
---|
311 | return 1;
|
---|
312 | }
|
---|
313 |
|
---|
314 | glfwSetMouseButtonCallback(window, mouse_button_callback_new);
|
---|
315 |
|
---|
316 | glfwMakeContextCurrent(window);
|
---|
317 | glewExperimental = GL_TRUE;
|
---|
318 | glewInit();
|
---|
319 |
|
---|
320 | // glViewport(0, 0, width*2, height*2);
|
---|
321 |
|
---|
322 | const GLubyte* renderer = glGetString(GL_RENDERER);
|
---|
323 | const GLubyte* version = glGetString(GL_VERSION);
|
---|
324 | printf("Renderer: %s\n", renderer);
|
---|
325 | printf("OpenGL version supported %s\n", version);
|
---|
326 |
|
---|
327 | glEnable(GL_DEPTH_TEST);
|
---|
328 | glDepthFunc(GL_LESS);
|
---|
329 |
|
---|
330 | glEnable(GL_CULL_FACE);
|
---|
331 | // glCullFace(GL_BACK);
|
---|
332 | // glFrontFace(GL_CW);
|
---|
333 |
|
---|
334 | int x, y;
|
---|
335 | unsigned char* texImage = loadImage("test.png", &x, &y);
|
---|
336 | if (texImage) {
|
---|
337 | cout << "Yay, I loaded an image!" << endl;
|
---|
338 | cout << x << endl;
|
---|
339 | cout << y << endl;
|
---|
340 | printf ("first 4 bytes are: %i %i %i %i\n", texImage[0], texImage[1], texImage[2], texImage[3]);
|
---|
341 | }
|
---|
342 |
|
---|
343 | GLuint tex = 0;
|
---|
344 | glGenTextures(1, &tex);
|
---|
345 | glActiveTexture(GL_TEXTURE0);
|
---|
346 | glBindTexture(GL_TEXTURE_2D, tex);
|
---|
347 | glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, x, y, 0, GL_RGBA, GL_UNSIGNED_BYTE, texImage);
|
---|
348 |
|
---|
349 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
---|
350 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
---|
351 | glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
---|
352 | glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
---|
353 |
|
---|
354 | GLfloat points[] = {
|
---|
355 | 0.0f, 0.5f, 0.0f,
|
---|
356 | -0.5f, -0.5f, 0.0f,
|
---|
357 | 0.5f, -0.5f, 0.0f,
|
---|
358 | 0.5f, -0.5f, 0.0f,
|
---|
359 | -0.5f, -0.5f, 0.0f,
|
---|
360 | 0.0f, 0.5f, 0.0f,
|
---|
361 | };
|
---|
362 |
|
---|
363 | GLfloat colors[] = {
|
---|
364 | 1.0, 0.0, 0.0,
|
---|
365 | 0.0, 0.0, 1.0,
|
---|
366 | 0.0, 1.0, 0.0,
|
---|
367 | 0.0, 1.0, 0.0,
|
---|
368 | 0.0, 0.0, 1.0,
|
---|
369 | 1.0, 0.0, 0.0,
|
---|
370 | };
|
---|
371 |
|
---|
372 | GLfloat colors_new[] = {
|
---|
373 | 0.0, 1.0, 0.0,
|
---|
374 | 0.0, 1.0, 0.0,
|
---|
375 | 0.0, 1.0, 0.0,
|
---|
376 | 0.0, 1.0, 0.0,
|
---|
377 | 0.0, 1.0, 0.0,
|
---|
378 | 0.0, 1.0, 0.0,
|
---|
379 | };
|
---|
380 |
|
---|
381 | // Each point is made of 3 floats
|
---|
382 | int numPoints = (sizeof(points) / sizeof(float)) / 3;
|
---|
383 |
|
---|
384 | GLfloat points2[] = {
|
---|
385 | 0.5f, 0.5f, 0.0f,
|
---|
386 | -0.5f, 0.5f, 0.0f,
|
---|
387 | -0.5f, -0.5f, 0.0f,
|
---|
388 | 0.5f, 0.5f, 0.0f,
|
---|
389 | -0.5f, -0.5f, 0.0f,
|
---|
390 | 0.5f, -0.5f, 0.0f,
|
---|
391 | };
|
---|
392 |
|
---|
393 | GLfloat colors2[] = {
|
---|
394 | 0.0, 0.9, 0.9,
|
---|
395 | 0.0, 0.9, 0.9,
|
---|
396 | 0.0, 0.9, 0.9,
|
---|
397 | 0.0, 0.9, 0.9,
|
---|
398 | 0.0, 0.9, 0.9,
|
---|
399 | 0.0, 0.9, 0.9,
|
---|
400 | };
|
---|
401 |
|
---|
402 | GLfloat texcoords[] = {
|
---|
403 | 1.0f, 1.0f,
|
---|
404 | 0.0f, 1.0f,
|
---|
405 | 0.0, 0.0,
|
---|
406 | 1.0, 1.0,
|
---|
407 | 0.0, 0.0,
|
---|
408 | 1.0, 0.0
|
---|
409 | };
|
---|
410 |
|
---|
411 | // Each point is made of 3 floats
|
---|
412 | int numPoints2 = (sizeof(points2) / sizeof(float)) / 3;
|
---|
413 |
|
---|
414 | // initialize global variables for click intersection tests
|
---|
415 |
|
---|
416 | colored_triangle = {
|
---|
417 | vec3(points[0], points[1], points[2]),
|
---|
418 | vec3(points[3], points[4], points[5]),
|
---|
419 | vec3(points[6], points[7], points[8]),
|
---|
420 | };
|
---|
421 |
|
---|
422 | square_triangle1 = {
|
---|
423 | vec3(points2[0], points2[1], points2[2]),
|
---|
424 | vec3(points2[3], points2[4], points2[5]),
|
---|
425 | vec3(points2[6], points2[7], points2[8]),
|
---|
426 | };
|
---|
427 |
|
---|
428 | square_triangle2 = {
|
---|
429 | vec3(points2[9], points2[10], points2[11]),
|
---|
430 | vec3(points2[12], points2[13], points2[14]),
|
---|
431 | vec3(points2[15], points2[16], points2[17]),
|
---|
432 | };
|
---|
433 |
|
---|
434 | triangle_face = colored_triangle;
|
---|
435 |
|
---|
436 | /*
|
---|
437 | mat4 R_model = rotate(mat4(), 4.0f, vec3(0.0f, 1.0f, 0.0f));
|
---|
438 | */
|
---|
439 | mat4 T_model = translate(mat4(), vec3(0.5f, 0.0f, 0.0f));
|
---|
440 | mat4 R_model = rotate(mat4(), 0.0f, vec3(0.0f, 1.0f, 0.0f));
|
---|
441 | model_mat = T_model*R_model;
|
---|
442 |
|
---|
443 | // mat4 T_model2 = translate(mat4(), vec3(-1.0f, 0.0f, 0.0f));
|
---|
444 | mat4 T_model2 = translate(mat4(), vec3(-0.5f, 0.0f, 0.0f));
|
---|
445 | mat4 R_model2 = rotate(mat4(), 0.0f, vec3(0.0f, 1.0f, 0.0f));
|
---|
446 | model_mat2 = T_model2*R_model2;
|
---|
447 |
|
---|
448 | GLuint points_vbo = 0;
|
---|
449 | glGenBuffers(1, &points_vbo);
|
---|
450 | glBindBuffer(GL_ARRAY_BUFFER, points_vbo);
|
---|
451 | glBufferData(GL_ARRAY_BUFFER, sizeof(points), points, GL_STATIC_DRAW);
|
---|
452 |
|
---|
453 | GLuint colors_vbo = 0;
|
---|
454 | glGenBuffers(1, &colors_vbo);
|
---|
455 | glBindBuffer(GL_ARRAY_BUFFER, colors_vbo);
|
---|
456 | glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors, GL_STATIC_DRAW);
|
---|
457 |
|
---|
458 | GLuint vao = 0;
|
---|
459 | glGenVertexArrays(1, &vao);
|
---|
460 | glBindVertexArray(vao);
|
---|
461 | glBindBuffer(GL_ARRAY_BUFFER, points_vbo);
|
---|
462 | glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL);
|
---|
463 | glBindBuffer(GL_ARRAY_BUFFER, colors_vbo);
|
---|
464 | glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
|
---|
465 |
|
---|
466 | glEnableVertexAttribArray(0);
|
---|
467 | glEnableVertexAttribArray(1);
|
---|
468 |
|
---|
469 | GLuint points2_vbo = 0;
|
---|
470 | glGenBuffers(1, &points2_vbo);
|
---|
471 | glBindBuffer(GL_ARRAY_BUFFER, points2_vbo);
|
---|
472 | glBufferData(GL_ARRAY_BUFFER, sizeof(points2), points2, GL_STATIC_DRAW);
|
---|
473 |
|
---|
474 | GLuint colors2_vbo = 0;
|
---|
475 | glGenBuffers(1, &colors2_vbo);
|
---|
476 | glBindBuffer(GL_ARRAY_BUFFER, colors2_vbo);
|
---|
477 | glBufferData(GL_ARRAY_BUFFER, sizeof(colors2), colors2, GL_STATIC_DRAW);
|
---|
478 |
|
---|
479 | GLuint vt_vbo;
|
---|
480 | glGenBuffers(1, &vt_vbo);
|
---|
481 | glBindBuffer(GL_ARRAY_BUFFER, vt_vbo);
|
---|
482 | glBufferData(GL_ARRAY_BUFFER, sizeof(texcoords), texcoords, GL_STATIC_DRAW);
|
---|
483 |
|
---|
484 | GLuint vao2 = 0;
|
---|
485 | glGenVertexArrays(1, &vao2);
|
---|
486 | glBindVertexArray(vao2);
|
---|
487 | glBindBuffer(GL_ARRAY_BUFFER, points2_vbo);
|
---|
488 | glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL);
|
---|
489 | // glBindBuffer(GL_ARRAY_BUFFER, colors2_vbo);
|
---|
490 | // glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
|
---|
491 | glBindBuffer(GL_ARRAY_BUFFER, vt_vbo);
|
---|
492 | glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, NULL);
|
---|
493 |
|
---|
494 | glEnableVertexAttribArray(0);
|
---|
495 | glEnableVertexAttribArray(1);
|
---|
496 |
|
---|
497 | GLuint shader_program = loadShaderProgram("./color.vert", "./color.frag");
|
---|
498 | GLuint shader_program2 = loadShaderProgram("./texture.vert", "./texture.frag");
|
---|
499 |
|
---|
500 | float speed = 1.0f;
|
---|
501 | float last_position = 0.0f;
|
---|
502 |
|
---|
503 | float cam_speed = 1.0f;
|
---|
504 | float cam_yaw_speed = 60.0f*ONE_DEG_IN_RAD;
|
---|
505 |
|
---|
506 | //cam_pos = vec3(0.0f, 0.0f, 2.0f);
|
---|
507 | cam_pos = vec3(0.0f, 0.0f, 0.3f);
|
---|
508 | float cam_yaw = 0.0f * 2.0f * 3.14159f / 360.0f;
|
---|
509 |
|
---|
510 | mat4 T = translate(mat4(), vec3(-cam_pos.x, -cam_pos.y, -cam_pos.z));
|
---|
511 | mat4 R = rotate(mat4(), -cam_yaw, vec3(0.0f, 1.0f, 0.0f));
|
---|
512 | /*
|
---|
513 | mat4 T = translate(mat4(), vec3(0.0f, 0.0f, 0.0f));
|
---|
514 | mat4 R = rotate(mat4(), 0.0f, vec3(0.0f, 1.0f, 0.0f));
|
---|
515 | */
|
---|
516 | view_mat = R*T;
|
---|
517 |
|
---|
518 | float fov = 67.0f * ONE_DEG_IN_RAD;
|
---|
519 | float aspect = (float)width / (float)height;
|
---|
520 |
|
---|
521 | float range = tan(fov * 0.5f) * NEAR_CLIP;
|
---|
522 | float Sx = NEAR_CLIP / (range * aspect);
|
---|
523 | float Sy = NEAR_CLIP / range;
|
---|
524 | float Sz = -(FAR_CLIP + NEAR_CLIP) / (FAR_CLIP - NEAR_CLIP);
|
---|
525 | float Pz = -(2.0f * FAR_CLIP * NEAR_CLIP) / (FAR_CLIP - NEAR_CLIP);
|
---|
526 |
|
---|
527 | /*
|
---|
528 | float proj_arr[] = {
|
---|
529 | Sx, 0.0f, 0.0f, 0.0f,
|
---|
530 | 0.0f, Sy, 0.0f, 0.0f,
|
---|
531 | 0.0f, 0.0f, Sz, -1.0f,
|
---|
532 | 0.0f, 0.0f, Pz, 0.0f,
|
---|
533 | };
|
---|
534 | */
|
---|
535 | float proj_arr[] = {
|
---|
536 | 1.0f, 0.0f, 0.0f, 0.0f,
|
---|
537 | 0.0f, 1.0f, 0.0f, 0.0f,
|
---|
538 | 0.0f, 0.0f, 1.0f, 0.0f,
|
---|
539 | 0.0f, 0.0f, 0.0f, 1.0f,
|
---|
540 | };
|
---|
541 | proj_mat = make_mat4(proj_arr);
|
---|
542 |
|
---|
543 | GLint model_test_loc = glGetUniformLocation(shader_program, "model");
|
---|
544 | GLint view_test_loc = glGetUniformLocation(shader_program, "view");
|
---|
545 | GLint proj_test_loc = glGetUniformLocation(shader_program, "proj");
|
---|
546 |
|
---|
547 | GLint model_mat_loc = glGetUniformLocation(shader_program2, "model");
|
---|
548 | GLint view_mat_loc = glGetUniformLocation(shader_program2, "view");
|
---|
549 | GLint proj_mat_loc = glGetUniformLocation(shader_program2, "proj");
|
---|
550 |
|
---|
551 | glUseProgram(shader_program);
|
---|
552 | glUniformMatrix4fv(model_test_loc, 1, GL_FALSE, value_ptr(model_mat));
|
---|
553 | glUniformMatrix4fv(view_test_loc, 1, GL_FALSE, value_ptr(view_mat));
|
---|
554 | glUniformMatrix4fv(proj_test_loc, 1, GL_FALSE, value_ptr(proj_mat));
|
---|
555 |
|
---|
556 | glUseProgram(shader_program2);
|
---|
557 | glUniformMatrix4fv(model_mat_loc, 1, GL_FALSE, value_ptr(model_mat2));
|
---|
558 | glUniformMatrix4fv(view_mat_loc, 1, GL_FALSE, value_ptr(view_mat));
|
---|
559 | glUniformMatrix4fv(proj_mat_loc, 1, GL_FALSE, value_ptr(proj_mat));
|
---|
560 |
|
---|
561 | bool cam_moved = false;
|
---|
562 |
|
---|
563 | double previous_seconds = glfwGetTime();
|
---|
564 | while (!glfwWindowShouldClose(window)) {
|
---|
565 | double current_seconds = glfwGetTime();
|
---|
566 | double elapsed_seconds = current_seconds - previous_seconds;
|
---|
567 | previous_seconds = current_seconds;
|
---|
568 |
|
---|
569 | if (fabs(last_position) > 1.0f) {
|
---|
570 | speed = -speed;
|
---|
571 | }
|
---|
572 |
|
---|
573 | if (clicked) {
|
---|
574 | glBindBuffer(GL_ARRAY_BUFFER, colors_vbo);
|
---|
575 |
|
---|
576 | if (colors_i == 0) {
|
---|
577 | glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors_new, GL_STATIC_DRAW);
|
---|
578 | colors_i = 1;
|
---|
579 | } else {
|
---|
580 | glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors, GL_STATIC_DRAW);
|
---|
581 | colors_i = 0;
|
---|
582 | }
|
---|
583 |
|
---|
584 | clicked = false;
|
---|
585 | }
|
---|
586 |
|
---|
587 | /*
|
---|
588 | model[12] = last_position + speed*elapsed_seconds;
|
---|
589 | last_position = model[12];
|
---|
590 | */
|
---|
591 |
|
---|
592 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
---|
593 |
|
---|
594 | glUseProgram(shader_program);
|
---|
595 |
|
---|
596 | // this is temporary.
|
---|
597 | // It's needed to offset the code for the recoloring of the square working during click detection
|
---|
598 | glUniformMatrix4fv(model_test_loc, 1, GL_FALSE, value_ptr(model_mat));
|
---|
599 |
|
---|
600 | glBindVertexArray(vao);
|
---|
601 |
|
---|
602 | glDrawArrays(GL_TRIANGLES, 0, numPoints);
|
---|
603 |
|
---|
604 | if (clicked_square) {
|
---|
605 | glUseProgram(shader_program);
|
---|
606 |
|
---|
607 | // this is temporary.
|
---|
608 | // It's needed to get the recoloring of the square working during click detection
|
---|
609 | glUniformMatrix4fv(model_test_loc, 1, GL_FALSE, value_ptr(model_mat2));
|
---|
610 |
|
---|
611 | glBindVertexArray(vao2);
|
---|
612 |
|
---|
613 | glBindBuffer(GL_ARRAY_BUFFER, colors2_vbo);
|
---|
614 | glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL);
|
---|
615 | } else {
|
---|
616 | glUseProgram(shader_program2);
|
---|
617 |
|
---|
618 | glBindVertexArray(vao2);
|
---|
619 |
|
---|
620 | glBindBuffer(GL_ARRAY_BUFFER, vt_vbo);
|
---|
621 | glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, NULL);
|
---|
622 | }
|
---|
623 |
|
---|
624 | glDrawArrays(GL_TRIANGLES, 0, numPoints2);
|
---|
625 |
|
---|
626 | glfwPollEvents();
|
---|
627 | glfwSwapBuffers(window);
|
---|
628 |
|
---|
629 | if (GLFW_PRESS == glfwGetKey(window, GLFW_KEY_ESCAPE)) {
|
---|
630 | glfwSetWindowShouldClose(window, 1);
|
---|
631 | }
|
---|
632 |
|
---|
633 | float dist = cam_speed * elapsed_seconds;
|
---|
634 | if (glfwGetKey(window, GLFW_KEY_A)) {
|
---|
635 | cam_pos.x -= cos(cam_yaw)*dist;
|
---|
636 | cam_pos.z += sin(cam_yaw)*dist;
|
---|
637 | cam_moved = true;
|
---|
638 | }
|
---|
639 | if (glfwGetKey(window, GLFW_KEY_D)) {
|
---|
640 | cam_pos.x += cos(cam_yaw)*dist;
|
---|
641 | cam_pos.z -= sin(cam_yaw)*dist;
|
---|
642 | cam_moved = true;
|
---|
643 | }
|
---|
644 | if (glfwGetKey(window, GLFW_KEY_W)) {
|
---|
645 | cam_pos.x -= sin(cam_yaw)*dist;
|
---|
646 | cam_pos.z -= cos(cam_yaw)*dist;
|
---|
647 | cam_moved = true;
|
---|
648 | }
|
---|
649 | if (glfwGetKey(window, GLFW_KEY_S)) {
|
---|
650 | cam_pos.x += sin(cam_yaw)*dist;
|
---|
651 | cam_pos.z += cos(cam_yaw)*dist;
|
---|
652 | cam_moved = true;
|
---|
653 | }
|
---|
654 | if (glfwGetKey(window, GLFW_KEY_LEFT)) {
|
---|
655 | cam_yaw += cam_yaw_speed * elapsed_seconds;
|
---|
656 | cam_moved = true;
|
---|
657 | }
|
---|
658 | if (glfwGetKey(window, GLFW_KEY_RIGHT)) {
|
---|
659 | cam_yaw -= cam_yaw_speed * elapsed_seconds;
|
---|
660 | cam_moved = true;
|
---|
661 | }
|
---|
662 | if (cam_moved) {
|
---|
663 | T = translate(mat4(), vec3(-cam_pos.x, -cam_pos.y, -cam_pos.z));
|
---|
664 | R = rotate(mat4(), -cam_yaw, vec3(0.0f, 1.0f, 0.0f));
|
---|
665 | // view_mat = R*T;
|
---|
666 |
|
---|
667 | glUniformMatrix4fv(view_mat_loc, 1, GL_FALSE, value_ptr(view_mat));
|
---|
668 | cam_moved = false;
|
---|
669 | }
|
---|
670 | }
|
---|
671 |
|
---|
672 | glfwTerminate();
|
---|
673 | return 0;
|
---|
674 | }
|
---|
675 |
|
---|
676 | GLuint loadShader(GLenum type, string file) {
|
---|
677 | cout << "Loading shader from file " << file << endl;
|
---|
678 |
|
---|
679 | ifstream shaderFile(file);
|
---|
680 | GLuint shaderId = 0;
|
---|
681 |
|
---|
682 | if (shaderFile.is_open()) {
|
---|
683 | string line, shaderString;
|
---|
684 |
|
---|
685 | while(getline(shaderFile, line)) {
|
---|
686 | shaderString += line + "\n";
|
---|
687 | }
|
---|
688 | shaderFile.close();
|
---|
689 | const char* shaderCString = shaderString.c_str();
|
---|
690 |
|
---|
691 | shaderId = glCreateShader(type);
|
---|
692 | glShaderSource(shaderId, 1, &shaderCString, NULL);
|
---|
693 | glCompileShader(shaderId);
|
---|
694 |
|
---|
695 | cout << "Loaded successfully" << endl;
|
---|
696 | } else {
|
---|
697 | cout << "Failed to loade the file" << endl;
|
---|
698 | }
|
---|
699 |
|
---|
700 | return shaderId;
|
---|
701 | }
|
---|
702 |
|
---|
703 | GLuint loadShaderProgram(string vertexShaderPath, string fragmentShaderPath) {
|
---|
704 | GLuint vs = loadShader(GL_VERTEX_SHADER, vertexShaderPath);
|
---|
705 | GLuint fs = loadShader(GL_FRAGMENT_SHADER, fragmentShaderPath);
|
---|
706 |
|
---|
707 | GLuint shader_program = glCreateProgram();
|
---|
708 | glAttachShader(shader_program, vs);
|
---|
709 | glAttachShader(shader_program, fs);
|
---|
710 |
|
---|
711 | glLinkProgram(shader_program);
|
---|
712 |
|
---|
713 | return shader_program;
|
---|
714 | }
|
---|
715 |
|
---|
716 | unsigned char* loadImage(string file_name, int* x, int* y) {
|
---|
717 | int n;
|
---|
718 | int force_channels = 4;
|
---|
719 | unsigned char* image_data = stbi_load(file_name.c_str(), x, y, &n, force_channels);
|
---|
720 | if (!image_data) {
|
---|
721 | fprintf(stderr, "ERROR: could not load %s\n", file_name.c_str());
|
---|
722 | }
|
---|
723 | return image_data;
|
---|
724 | }
|
---|
725 |
|
---|
726 | bool insideTriangle(vec3 p, array<vec3,3> triangle) {
|
---|
727 | vec3 v21 = triangle[1]-triangle[0];
|
---|
728 | vec3 v31 = triangle[2]-triangle[0];
|
---|
729 | vec3 pv1 = p-triangle[0];
|
---|
730 |
|
---|
731 | float y = (pv1.y*v21.x - pv1.x*v21.y) / (v31.y*v21.x - v31.x*v21.y);
|
---|
732 | float x = (pv1.x-y*v31.x) / v21.x;
|
---|
733 |
|
---|
734 | cout << "(" << x << ", " << y << ")" << endl;
|
---|
735 |
|
---|
736 | return x > 0.0f && y > 0.0f && x+y < 1.0f;
|
---|
737 | }
|
---|
738 |
|
---|
739 | void printVector(string label, vec3 v) {
|
---|
740 | cout << label << " -> (" << v.x << "," << v.y << "," << v.z << ")" << endl;
|
---|
741 | }
|
---|