#include "logger.h" #include "stb_image.h" #define _USE_MATH_DEFINES #define GLM_SWIZZLE #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace glm; #define ONE_DEG_IN_RAD (2.0 * M_PI) / 360.0 // 0.017444444 const bool FULLSCREEN = false; int width = 640; int height = 480; vec3 cam_pos; array triangle_face; array colored_triangle; array square_triangle1; array square_triangle2; bool clicked = false; int colors_i = 0; bool clicked_square = false; mat4 model_mat; mat4 model_mat2; mat4 view_mat; mat4 proj_mat; bool insideTriangle(vec3 p, array triangle); GLuint loadShader(GLenum type, string file); GLuint loadShaderProgram(string vertexShaderPath, string fragmentShaderPath); unsigned char* loadImage(string file_name, int* x, int* y); void printVector(string label, vec3 v); float NEAR_CLIP = 0.1f; float FAR_CLIP = 100.0f; void glfw_error_callback(int error, const char* description) { gl_log_err("GLFW ERROR: code %i msg: %s\n", error, description); } void mouse_button_callback(GLFWwindow* window, int button, int action, int mods) { double mouse_x, mouse_y; glfwGetCursorPos(window, &mouse_x, &mouse_y); if (button == GLFW_MOUSE_BUTTON_LEFT && action == GLFW_PRESS) { cout << "Mouse clicked (" << mouse_x << "," << mouse_y << ")" << endl; float x = (2.0f*mouse_x) / width - 1.0f; float y = 1.0f - (2.0f*mouse_y) / height; cout << "x: " << x << ", y: " << y << endl; // Since the projection matrix gets applied before the view matrix, // treat the initial camera position (aka origin of the ray) as (0, 0, 0) // When getting the ray direction, you can use near and fov to get the // coordinates vec4 ray_clip = vec4(x, y, -1.0f, 1.0f); // this should have a z equal to the near clipping plane vec4 ray_eye = inverse(proj_mat) * ray_clip; ray_eye = vec4(ray_eye.xy(), -1.0f, 0.0f); vec3 ray_world = normalize((inverse(view_mat) * ray_eye).xyz()); /* LATEST NOTES: * * Normalizing the world ray caused issues, although it should make sense with the projection * matrix, since the z coordinate has meaning there. * * Now, I need to figure out the correct intersection test in 2D space * Also, need to check that the global triangle points are correct */ // since ray_world is the end result we want anyway, we probably don't need to add cam_pos to // it, only to subtract it later vec3 click_point = cam_pos + ray_world; /* Now, we need to generate the constants for the equations describing * a 3D line: * (x - x0) / a = (y - y0) / b = (z - z0) / c * * The line goes through the camera position, so * cam_pos = */ // upper right corner is 1, 1 in opengl cout << "Converted -> (" << ray_world.x << "," << ray_world.y << "," << ray_world.z << ")" << endl << endl;; cout << "Camera -> (" << cam_pos.x << "," << cam_pos.y << "," << cam_pos.z << ")" << endl; cout << "Click point -> (" << click_point.x << "," << click_point.y << "," << click_point.z << ")" << endl; float a = 1.0f; float b = a * (click_point.y - cam_pos.y) / (click_point.x - cam_pos.x); float c = a * (click_point.z - cam_pos.z) / (click_point.x - cam_pos.x); cout << "(x - " << cam_pos.x << ") / " << a << " = "; cout << "(y - " << cam_pos.y << ") / " << b << " = "; cout << "(z - " << cam_pos.z << ") / " << c << endl;; /* Now, we need to generate the constants for the equations describing * a 3D plane: * dx + ey +fz +g = 0 */ vec3 fp1 = triangle_face[0]; vec3 fp2 = triangle_face[1]; vec3 fp3 = triangle_face[2]; cout << "Points on the plane" << endl; cout << "(" << fp1.x << ", " << fp1.y << ", " << fp1.z << ")" << endl; cout << "(" << fp2.x << ", " << fp2.y << ", " << fp2.z << ")" << endl; cout << "(" << fp3.x << ", " << fp3.y << ", " << fp3.z << ")" << endl; float pa = (fp2.y-fp1.y)*(fp3.z-fp1.z) - (fp3.y-fp1.y)*(fp2.z-fp1.z); float pb = (fp2.z-fp1.z)*(fp3.x-fp1.x) - (fp3.z-fp1.z)*(fp2.x-fp1.x); float pc = (fp2.x-fp1.x)*(fp3.y-fp1.y) - (fp3.x-fp1.x)*(fp2.y-fp1.y); float pd = -(pa*fp1.x+pb*fp1.y+pc*fp1.z); cout << pa << "x+" << pb << "y+" << pc << "z+" << pd << "=0" << endl; // get intersection // the intersection this computes is incorrect // it doesn't match the equation of the plane vec3 i; i.z = -cam_pos.z - pc*pd/(pa*a+pb*b); i.x = cam_pos.x + a * (i.z-cam_pos.z) / c; i.y = cam_pos.y + b * (i.z-cam_pos.z) / c; cout << "The holy grail?" << endl; cout << "(" << i.x << "," << i.y << "," << i.z << ")" << endl; clicked = insideTriangle(i, triangle_face); cout << (clicked ? "true" : "false") << endl; } } /* REFACTORING PLAN: * * Have an array of object structs * Each object struct has: * -a model matrix * -a selected boolean * Eventually, maybe also want to store a reference to the correct shader * or whatever other info I need to properly render it * * Have an array of face structs * Each face struct has * -an object index indicating which object it is a part of * -an array of three points * * The mouse button callback will: * -Set all selected flags in the objects array to false * -iterate through the faces array * -For each face, it will call faceClicked() with the following params: * -Probably a world ray created from the mouse click coordinates * -An array of 3 points representing the face * -The object struct represnting the object the face is a part of */ void mouse_button_callback_new(GLFWwindow* window, int button, int action, int mods) { double mouse_x, mouse_y; glfwGetCursorPos(window, &mouse_x, &mouse_y); if (button == GLFW_MOUSE_BUTTON_LEFT && action == GLFW_PRESS) { cout << "Mouse clicked (" << mouse_x << "," << mouse_y << ")" << endl; float x = (2.0f*mouse_x) / width - 1.0f; float y = 1.0f - (2.0f*mouse_y) / height; cout << "x: " << x << ", y: " << y << endl; // Since the projection matrix gets applied before the view matrix, // treat the initial camera position (aka origin of the ray) as (0, 0, 0) // When getting the ray direction, you can use near and fov to get the // coordinates // vec4 ray_clip = vec4(x, y, -1.0f, 1.0f); // this should have a z equal to the near clipping plane // vec4 ray_eye = inverse(proj_mat) * ray_clip; // ray_eye = vec4(ray_eye.xy(), -1.0f, 0.0f); // vec3 ray_world = normalize((inverse(view_mat) * ray_eye).xyz()); vec4 ray_clip = vec4(x, y, NEAR_CLIP, 1.0f); // this should have a z equal to the near clipping plane vec4 ray_eye = ray_clip; vec3 ray_world = (inverse(model_mat) * inverse(view_mat) * ray_eye).xyz(); /* LATEST NOTES: * * Normalizing the world ray caused issues, although it should make sense with the projection * matrix, since the z coordinate has meaning there. * Plus, we really want to normalize it only once we recompute it below as the difference of two points, * although doing so shouldn't effect the results. Check the book to see if there is a good reason for doing so. */ printVector("Initial world ray:", ray_world); vec4 cam_pos_origin = vec4(x, y, 0.0f, 1.0f); vec3 cam_pos_temp = (inverse(model_mat) * inverse(view_mat) * cam_pos_origin).xyz(); ray_world = ray_world-cam_pos_temp; cout << "Ray clip -> (" << ray_clip.x << "," << ray_clip.y << "," << ray_clip.z << ")" << endl << endl;; cout << "Ray world -> (" << ray_world.x << "," << ray_world.y << "," << ray_world.z << ")" << endl << endl;; cout << "Camera -> (" << cam_pos_temp.x << "," << cam_pos_temp.y << "," << cam_pos_temp.z << ")" << endl; vec3 fp1 = triangle_face[0]; vec3 fp2 = triangle_face[1]; vec3 fp3 = triangle_face[2]; cout << "Points on the plane" << endl; cout << "(" << fp1.x << ", " << fp1.y << ", " << fp1.z << ")" << endl; cout << "(" << fp2.x << ", " << fp2.y << ", " << fp2.z << ")" << endl; cout << "(" << fp3.x << ", " << fp3.y << ", " << fp3.z << ")" << endl; // LINE EQUATION: P = O + Dt // O = cam_pos // D = ray_world // PLANE EQUATION: P dot n + d = 0 (n is the normal vector and d is the offset from the origin) // Take the cross-product of two vectors on the plane to get the normal vec3 v1 = fp2 - fp1; vec3 v2 = fp3 - fp1; vec3 normal = vec3(v1.y*v2.z-v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x); printVector("v1", v1); printVector("v2", v2); printVector("Cross", normal); cout << "Test theory: " << glm::dot(cam_pos_temp, normal) << endl; cout << "Test 2: " << glm::dot(ray_world, normal) << endl; float d = -glm::dot(fp1, normal); cout << "d: " << d << endl; float t = - (glm::dot(cam_pos_temp, normal) + d) / glm::dot(ray_world, normal); cout << "t: " << t << endl; vec3 intersection = cam_pos_temp+t*ray_world; printVector("Intersection", intersection); clicked = insideTriangle(intersection, triangle_face); cout << (clicked ? "true" : "false") << endl; clicked_square = !clicked_square; } } int main(int argc, char* argv[]) { cout << "New OpenGL Game" << endl; if (!restart_gl_log()) {} gl_log("starting GLFW\n%s\n", glfwGetVersionString()); glfwSetErrorCallback(glfw_error_callback); if (!glfwInit()) { fprintf(stderr, "ERROR: could not start GLFW3\n"); return 1; } #ifdef __APPLE__ glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #endif glfwWindowHint(GLFW_SAMPLES, 4); GLFWwindow* window = NULL; if (FULLSCREEN) { GLFWmonitor* mon = glfwGetPrimaryMonitor(); const GLFWvidmode* vmode = glfwGetVideoMode(mon); cout << "Fullscreen resolution " << vmode->width << "x" << vmode->height << endl; window = glfwCreateWindow(vmode->width, vmode->height, "Extended GL Init", mon, NULL); width = vmode->width; height = vmode->height; } else { window = glfwCreateWindow(width, height, "Hello Triangle", NULL, NULL); } if (!window) { fprintf(stderr, "ERROR: could not open window with GLFW3\n"); glfwTerminate(); return 1; } glfwSetMouseButtonCallback(window, mouse_button_callback_new); glfwMakeContextCurrent(window); glewExperimental = GL_TRUE; glewInit(); // glViewport(0, 0, width*2, height*2); const GLubyte* renderer = glGetString(GL_RENDERER); const GLubyte* version = glGetString(GL_VERSION); printf("Renderer: %s\n", renderer); printf("OpenGL version supported %s\n", version); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glEnable(GL_CULL_FACE); // glCullFace(GL_BACK); // glFrontFace(GL_CW); int x, y; unsigned char* texImage = loadImage("test.png", &x, &y); if (texImage) { cout << "Yay, I loaded an image!" << endl; cout << x << endl; cout << y << endl; printf ("first 4 bytes are: %i %i %i %i\n", texImage[0], texImage[1], texImage[2], texImage[3]); } GLuint tex = 0; glGenTextures(1, &tex); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, x, y, 0, GL_RGBA, GL_UNSIGNED_BYTE, texImage); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); GLfloat points[] = { 0.0f, 0.5f, 0.0f, -0.5f, -0.5f, 0.0f, 0.5f, -0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, -0.5f, 0.0f, 0.0f, 0.5f, 0.0f, }; GLfloat colors[] = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, }; GLfloat colors_new[] = { 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, }; // Each point is made of 3 floats int numPoints = (sizeof(points) / sizeof(float)) / 3; GLfloat points2[] = { 0.5f, 0.5f, 0.0f, -0.5f, 0.5f, 0.0f, -0.5f, -0.5f, 0.0f, 0.5f, 0.5f, 0.0f, -0.5f, -0.5f, 0.0f, 0.5f, -0.5f, 0.0f, }; GLfloat colors2[] = { 0.0, 0.9, 0.9, 0.0, 0.9, 0.9, 0.0, 0.9, 0.9, 0.0, 0.9, 0.9, 0.0, 0.9, 0.9, 0.0, 0.9, 0.9, }; GLfloat texcoords[] = { 1.0f, 1.0f, 0.0f, 1.0f, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0 }; // Each point is made of 3 floats int numPoints2 = (sizeof(points2) / sizeof(float)) / 3; // initialize global variables for click intersection tests colored_triangle = { vec3(points[0], points[1], points[2]), vec3(points[3], points[4], points[5]), vec3(points[6], points[7], points[8]), }; square_triangle1 = { vec3(points2[0], points2[1], points2[2]), vec3(points2[3], points2[4], points2[5]), vec3(points2[6], points2[7], points2[8]), }; square_triangle2 = { vec3(points2[9], points2[10], points2[11]), vec3(points2[12], points2[13], points2[14]), vec3(points2[15], points2[16], points2[17]), }; triangle_face = colored_triangle; /* mat4 R_model = rotate(mat4(), 4.0f, vec3(0.0f, 1.0f, 0.0f)); */ mat4 T_model = translate(mat4(), vec3(0.5f, 0.0f, 0.0f)); mat4 R_model = rotate(mat4(), 0.0f, vec3(0.0f, 1.0f, 0.0f)); model_mat = T_model*R_model; // mat4 T_model2 = translate(mat4(), vec3(-1.0f, 0.0f, 0.0f)); mat4 T_model2 = translate(mat4(), vec3(-0.5f, 0.0f, 0.0f)); mat4 R_model2 = rotate(mat4(), 0.0f, vec3(0.0f, 1.0f, 0.0f)); model_mat2 = T_model2*R_model2; GLuint points_vbo = 0; glGenBuffers(1, &points_vbo); glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(points), points, GL_STATIC_DRAW); GLuint colors_vbo = 0; glGenBuffers(1, &colors_vbo); glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors, GL_STATIC_DRAW); GLuint vao = 0; glGenVertexArrays(1, &vao); glBindVertexArray(vao); glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); GLuint points2_vbo = 0; glGenBuffers(1, &points2_vbo); glBindBuffer(GL_ARRAY_BUFFER, points2_vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(points2), points2, GL_STATIC_DRAW); GLuint colors2_vbo = 0; glGenBuffers(1, &colors2_vbo); glBindBuffer(GL_ARRAY_BUFFER, colors2_vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(colors2), colors2, GL_STATIC_DRAW); GLuint vt_vbo; glGenBuffers(1, &vt_vbo); glBindBuffer(GL_ARRAY_BUFFER, vt_vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(texcoords), texcoords, GL_STATIC_DRAW); GLuint vao2 = 0; glGenVertexArrays(1, &vao2); glBindVertexArray(vao2); glBindBuffer(GL_ARRAY_BUFFER, points2_vbo); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL); // glBindBuffer(GL_ARRAY_BUFFER, colors2_vbo); // glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, vt_vbo); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, NULL); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); GLuint shader_program = loadShaderProgram("./color.vert", "./color.frag"); GLuint shader_program2 = loadShaderProgram("./texture.vert", "./texture.frag"); float speed = 1.0f; float last_position = 0.0f; float cam_speed = 1.0f; float cam_yaw_speed = 60.0f*ONE_DEG_IN_RAD; //cam_pos = vec3(0.0f, 0.0f, 2.0f); cam_pos = vec3(0.0f, 0.0f, 0.3f); float cam_yaw = 0.0f * 2.0f * 3.14159f / 360.0f; mat4 T = translate(mat4(), vec3(-cam_pos.x, -cam_pos.y, -cam_pos.z)); mat4 R = rotate(mat4(), -cam_yaw, vec3(0.0f, 1.0f, 0.0f)); /* mat4 T = translate(mat4(), vec3(0.0f, 0.0f, 0.0f)); mat4 R = rotate(mat4(), 0.0f, vec3(0.0f, 1.0f, 0.0f)); */ view_mat = R*T; float fov = 67.0f * ONE_DEG_IN_RAD; float aspect = (float)width / (float)height; float range = tan(fov * 0.5f) * NEAR_CLIP; float Sx = NEAR_CLIP / (range * aspect); float Sy = NEAR_CLIP / range; float Sz = -(FAR_CLIP + NEAR_CLIP) / (FAR_CLIP - NEAR_CLIP); float Pz = -(2.0f * FAR_CLIP * NEAR_CLIP) / (FAR_CLIP - NEAR_CLIP); /* float proj_arr[] = { Sx, 0.0f, 0.0f, 0.0f, 0.0f, Sy, 0.0f, 0.0f, 0.0f, 0.0f, Sz, -1.0f, 0.0f, 0.0f, Pz, 0.0f, }; */ float proj_arr[] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, }; proj_mat = make_mat4(proj_arr); GLint model_test_loc = glGetUniformLocation(shader_program, "model"); GLint view_test_loc = glGetUniformLocation(shader_program, "view"); GLint proj_test_loc = glGetUniformLocation(shader_program, "proj"); GLint model_mat_loc = glGetUniformLocation(shader_program2, "model"); GLint view_mat_loc = glGetUniformLocation(shader_program2, "view"); GLint proj_mat_loc = glGetUniformLocation(shader_program2, "proj"); glUseProgram(shader_program); glUniformMatrix4fv(model_test_loc, 1, GL_FALSE, value_ptr(model_mat)); glUniformMatrix4fv(view_test_loc, 1, GL_FALSE, value_ptr(view_mat)); glUniformMatrix4fv(proj_test_loc, 1, GL_FALSE, value_ptr(proj_mat)); glUseProgram(shader_program2); glUniformMatrix4fv(model_mat_loc, 1, GL_FALSE, value_ptr(model_mat2)); glUniformMatrix4fv(view_mat_loc, 1, GL_FALSE, value_ptr(view_mat)); glUniformMatrix4fv(proj_mat_loc, 1, GL_FALSE, value_ptr(proj_mat)); bool cam_moved = false; double previous_seconds = glfwGetTime(); while (!glfwWindowShouldClose(window)) { double current_seconds = glfwGetTime(); double elapsed_seconds = current_seconds - previous_seconds; previous_seconds = current_seconds; if (fabs(last_position) > 1.0f) { speed = -speed; } if (clicked) { glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); if (colors_i == 0) { glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors_new, GL_STATIC_DRAW); colors_i = 1; } else { glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors, GL_STATIC_DRAW); colors_i = 0; } clicked = false; } /* model[12] = last_position + speed*elapsed_seconds; last_position = model[12]; */ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glUseProgram(shader_program); // this is temporary. // It's needed to offset the code for the recoloring of the square working during click detection glUniformMatrix4fv(model_test_loc, 1, GL_FALSE, value_ptr(model_mat)); glBindVertexArray(vao); glDrawArrays(GL_TRIANGLES, 0, numPoints); if (clicked_square) { glUseProgram(shader_program); // this is temporary. // It's needed to get the recoloring of the square working during click detection glUniformMatrix4fv(model_test_loc, 1, GL_FALSE, value_ptr(model_mat2)); glBindVertexArray(vao2); glBindBuffer(GL_ARRAY_BUFFER, colors2_vbo); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, NULL); } else { glUseProgram(shader_program2); glBindVertexArray(vao2); glBindBuffer(GL_ARRAY_BUFFER, vt_vbo); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, NULL); } glDrawArrays(GL_TRIANGLES, 0, numPoints2); glfwPollEvents(); glfwSwapBuffers(window); if (GLFW_PRESS == glfwGetKey(window, GLFW_KEY_ESCAPE)) { glfwSetWindowShouldClose(window, 1); } float dist = cam_speed * elapsed_seconds; if (glfwGetKey(window, GLFW_KEY_A)) { cam_pos.x -= cos(cam_yaw)*dist; cam_pos.z += sin(cam_yaw)*dist; cam_moved = true; } if (glfwGetKey(window, GLFW_KEY_D)) { cam_pos.x += cos(cam_yaw)*dist; cam_pos.z -= sin(cam_yaw)*dist; cam_moved = true; } if (glfwGetKey(window, GLFW_KEY_W)) { cam_pos.x -= sin(cam_yaw)*dist; cam_pos.z -= cos(cam_yaw)*dist; cam_moved = true; } if (glfwGetKey(window, GLFW_KEY_S)) { cam_pos.x += sin(cam_yaw)*dist; cam_pos.z += cos(cam_yaw)*dist; cam_moved = true; } if (glfwGetKey(window, GLFW_KEY_LEFT)) { cam_yaw += cam_yaw_speed * elapsed_seconds; cam_moved = true; } if (glfwGetKey(window, GLFW_KEY_RIGHT)) { cam_yaw -= cam_yaw_speed * elapsed_seconds; cam_moved = true; } if (cam_moved) { T = translate(mat4(), vec3(-cam_pos.x, -cam_pos.y, -cam_pos.z)); R = rotate(mat4(), -cam_yaw, vec3(0.0f, 1.0f, 0.0f)); // view_mat = R*T; glUniformMatrix4fv(view_mat_loc, 1, GL_FALSE, value_ptr(view_mat)); cam_moved = false; } } glfwTerminate(); return 0; } GLuint loadShader(GLenum type, string file) { cout << "Loading shader from file " << file << endl; ifstream shaderFile(file); GLuint shaderId = 0; if (shaderFile.is_open()) { string line, shaderString; while(getline(shaderFile, line)) { shaderString += line + "\n"; } shaderFile.close(); const char* shaderCString = shaderString.c_str(); shaderId = glCreateShader(type); glShaderSource(shaderId, 1, &shaderCString, NULL); glCompileShader(shaderId); cout << "Loaded successfully" << endl; } else { cout << "Failed to loade the file" << endl; } return shaderId; } GLuint loadShaderProgram(string vertexShaderPath, string fragmentShaderPath) { GLuint vs = loadShader(GL_VERTEX_SHADER, vertexShaderPath); GLuint fs = loadShader(GL_FRAGMENT_SHADER, fragmentShaderPath); GLuint shader_program = glCreateProgram(); glAttachShader(shader_program, vs); glAttachShader(shader_program, fs); glLinkProgram(shader_program); return shader_program; } unsigned char* loadImage(string file_name, int* x, int* y) { int n; int force_channels = 4; unsigned char* image_data = stbi_load(file_name.c_str(), x, y, &n, force_channels); if (!image_data) { fprintf(stderr, "ERROR: could not load %s\n", file_name.c_str()); } return image_data; } bool insideTriangle(vec3 p, array triangle) { vec3 v21 = triangle[1]-triangle[0]; vec3 v31 = triangle[2]-triangle[0]; vec3 pv1 = p-triangle[0]; float y = (pv1.y*v21.x - pv1.x*v21.y) / (v31.y*v21.x - v31.x*v21.y); float x = (pv1.x-y*v31.x) / v21.x; cout << "(" << x << ", " << y << ")" << endl; return x > 0.0f && y > 0.0f && x+y < 1.0f; } void printVector(string label, vec3 v) { cout << label << " -> (" << v.x << "," << v.y << "," << v.z << ")" << endl; }