#include "logger.h" #include "stb_image.h" // I think this was for the OpenGL 4 book font file tutorial //#define STB_IMAGE_WRITE_IMPLEMENTATION //#include "stb_image_write.h" #define _USE_MATH_DEFINES #include #include #include #include "IMGUI/imgui.h" #include "imgui_impl_glfw_gl3.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace glm; enum State { STATE_MAIN_MENU, STATE_GAME, }; enum Event { EVENT_GO_TO_MAIN_MENU, EVENT_GO_TO_GAME, EVENT_QUIT, }; enum ObjectType { TYPE_SHIP, TYPE_ASTEROID, TYPE_LASER, }; struct SceneObject { unsigned int id; ObjectType type; // Currently, model_transform should only have translate, and rotation and scale need to be done in model_base since // they need to be done when the object is at the origin. I should change this to have separate scale, rotate, and translate // matrices for each object that can be updated independently and then applied to the object in that order. mat4 model_mat, model_base, model_transform; mat4 translate_mat; // beginning of doing what's mentioned above GLuint shader_program; unsigned int num_points; GLuint vertex_vbo_offset; GLuint ubo_offset; vector points; vector colors; vector texcoords; vector normals; vector selected_colors; bool deleted; vec3 bounding_center; GLfloat bounding_radius; }; struct Asteroid : SceneObject { float hp; }; struct Laser : SceneObject { Asteroid* targetAsteroid; }; struct EffectOverTime { float& effectedValue; float startValue; double startTime; float changePerSecond; bool deleted; SceneObject* effectedObject; EffectOverTime(float& effectedValue, float changePerSecond, SceneObject* object) : effectedValue(effectedValue), changePerSecond(changePerSecond), effectedObject(object) { startValue = effectedValue; startTime = glfwGetTime(); deleted = false; } }; struct BufferInfo { unsigned int vbo_base; unsigned int vbo_offset; unsigned int vbo_capacity; unsigned int ubo_base; unsigned int ubo_offset; unsigned int ubo_capacity; }; void glfw_error_callback(int error, const char* description); void mouse_button_callback(GLFWwindow* window, int button, int action, int mods); void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods); void APIENTRY debugGlCallback( GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam ); bool faceClicked(array points, SceneObject* obj, vec4 world_ray, vec4 cam, vec4& click_point); bool insideTriangle(vec3 p, array triangle_points); GLuint loadShader(GLenum type, string file); GLuint loadShaderProgram(string vertexShaderPath, string fragmentShaderPath); unsigned char* loadImage(string file_name, int* x, int* y); void printVector(string label, vec3& v); void print4DVector(string label, vec4& v); void initObject(SceneObject* obj); void addObjectToScene(SceneObject* obj, map& shaderBufferInfo, GLuint points_vbo, GLuint colors_vbo, GLuint selected_colors_vbo, GLuint texcoords_vbo, GLuint normals_vbo, GLuint ubo, GLuint model_mat_idx_vbo, GLuint asteroid_sp); void removeObjectFromScene(SceneObject& obj, GLuint ubo); void calculateObjectBoundingBox(SceneObject* obj); void initializeBuffers( GLuint* points_vbo, GLuint* colors_vbo, GLuint* selected_colors_vbo, GLuint* texcoords_vbo, GLuint* normals_vbo, GLuint* ubo, GLuint* model_mat_idx_vbo); void populateBuffers(vector& objects, map& shaderBufferInfo, GLuint points_vbo, GLuint colors_vbo, GLuint selected_colors_vbo, GLuint texcoords_vbo, GLuint normals_vbo, GLuint ubo, GLuint model_mat_idx_vbo, GLuint asteroid_sp); void copyObjectDataToBuffers(SceneObject& obj, map& shaderBufferInfo, GLuint points_vbo, GLuint colors_vbo, GLuint selected_colors_vbo, GLuint texcoords_vbo, GLuint normals_vbo, GLuint ubo, GLuint model_mat_idx_vbo, GLuint asteroid_sp); void transformObject(SceneObject& obj, const mat4& transform, GLuint ubo); SceneObject* createShip(GLuint shader); Asteroid* createAsteroid(vec3 pos, GLuint shader); Laser* createLaser(vec3 start, vec3 end, vec3 color, GLfloat width, GLuint laser_sp); void translateLaser(Laser* laser, const vec3& translation, GLuint ubo); void updateLaserTarget(Laser* laser, vector& objects, GLuint points_vbo, GLuint asteroid_sp); bool getLaserAndAsteroidIntersection(vec3& start, vec3& end, SceneObject& asteroid, vec3& intersection); void renderMainMenu(); void renderMainMenuGui(); void renderScene(map& shaderBufferInfo, GLuint color_sp, GLuint asteroid_sp, GLuint texture_sp, GLuint laser_sp, GLuint color_vao, GLuint asteroid_vao, GLuint texture_vao, GLuint laser_vao, GLuint colors_vbo, GLuint selected_colors_vbo, SceneObject* selectedObject); void renderSceneGui(); float getRandomNum(float low, float high); #define NUM_KEYS (512) #define ONE_DEG_IN_RAD ((2.0f * M_PI) / 360.0f) // 0.017444444 (maybe make this a const instead) const int KEY_STATE_UNCHANGED = -1; const bool FULLSCREEN = false; unsigned int MAX_UNIFORMS = 0; // Requires OpenGL constants only available at runtime, so it can't be const int key_state[NUM_KEYS]; bool key_down[NUM_KEYS]; int width = 640; int height = 480; double fps; unsigned int score = 0; vec3 cam_pos; mat4 view_mat; mat4 proj_mat; vector objects; queue events; vector effects; SceneObject* clickedObject = NULL; SceneObject* selectedObject = NULL; float NEAR_CLIP = 0.1f; float FAR_CLIP = 100.0f; // TODO: Should really have some array or struct of UI-related variables bool isRunning = true; ImVec4 clear_color = ImVec4(0.45f, 0.55f, 0.60f, 1.00f); Laser* leftLaser = NULL; EffectOverTime* leftLaserEffect = NULL; Laser* rightLaser = NULL; EffectOverTime* rightLaserEffect = NULL; /* * TODO: Asteroid and ship movement currently depend on framerate, fix this in a generic/reusable way * Disabling vsync is a great way to test this */ int main(int argc, char* argv[]) { cout << "New OpenGL Game" << endl; if (!restart_gl_log()) {} gl_log("starting GLFW\n%s\n", glfwGetVersionString()); glfwSetErrorCallback(glfw_error_callback); if (!glfwInit()) { fprintf(stderr, "ERROR: could not start GLFW3\n"); return 1; } #ifdef __APPLE__ glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #else glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); #endif GLFWwindow* window = NULL; GLFWmonitor* mon = NULL; glfwWindowHint(GLFW_SAMPLES, 16); glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, true); if (FULLSCREEN) { mon = glfwGetPrimaryMonitor(); const GLFWvidmode* vmode = glfwGetVideoMode(mon); width = vmode->width; height = vmode->height; cout << "Fullscreen resolution " << vmode->width << "x" << vmode->height << endl; } window = glfwCreateWindow(width, height, "New OpenGL Game", mon, NULL); if (!window) { fprintf(stderr, "ERROR: could not open window with GLFW3\n"); glfwTerminate(); return 1; } glfwMakeContextCurrent(window); glewExperimental = GL_TRUE; glewInit(); if (GLEW_KHR_debug) { cout << "FOUND GLEW debug extension" << endl; glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS); glDebugMessageCallback((GLDEBUGPROC)debugGlCallback, nullptr); cout << "Bound debug callback" << endl; } else { cout << "OpenGL debugg message callback is not supported" << endl; } srand(time(0)); /* * RENDERING ALGORITHM NOTES: * * Basically, I need to split my objects into groups, so that each group fits into * GL_MAX_UNIFORM_BLOCK_SIZE. I need to have an offset and a size for each group. * Getting the offset is straitforward. The size may as well be GL_MAX_UNIFORM_BLOCK_SIZE * for each group, since it seems that smaller sizes just round up to the nearest GL_MAX_UNIFORM_BLOCK_SIZE * * I'll need to have a loop inside my render loop that calls glBindBufferRange(GL_UNIFORM_BUFFER, ... * for every 1024 objects and then draws all those objects with one glDraw call. * * Since I currently have very few objects, I'll wait to implement this until I have * a reasonable number of objects always using the same shader. */ GLint UNIFORM_BUFFER_OFFSET_ALIGNMENT, MAX_UNIFORM_BLOCK_SIZE; glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &UNIFORM_BUFFER_OFFSET_ALIGNMENT); glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &MAX_UNIFORM_BLOCK_SIZE); MAX_UNIFORMS = MAX_UNIFORM_BLOCK_SIZE / sizeof(mat4); cout << "UNIFORM_BUFFER_OFFSET_ALIGNMENT: " << UNIFORM_BUFFER_OFFSET_ALIGNMENT << endl; cout << "MAX_UNIFORMS: " << MAX_UNIFORMS << endl; // Setup Dear ImGui binding IMGUI_CHECKVERSION(); ImGui::CreateContext(); ImGuiIO& io = ImGui::GetIO(); (void)io; //io.ConfigFlags |= ImGuiConfigFlags_NavEnableKeyboard; // Enable Keyboard Controls //io.ConfigFlags |= ImGuiConfigFlags_NavEnableGamepad; // Enable Gamepad Controls ImGui_ImplGlfwGL3_Init(window, true); // Setup style ImGui::StyleColorsDark(); //ImGui::StyleColorsClassic(); glfwSetMouseButtonCallback(window, mouse_button_callback); glfwSetKeyCallback(window, key_callback); const GLubyte* renderer = glGetString(GL_RENDERER); const GLubyte* version = glGetString(GL_VERSION); cout << "Renderer: " << renderer << endl; cout << "OpenGL version supported " << version << endl; glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glEnable(GL_CULL_FACE); // glCullFace(GL_BACK); // glFrontFace(GL_CW); /* int x, y; unsigned char* texImage = loadImage("test.png", &x, &y); if (texImage) { cout << "Yay, I loaded an image!" << endl; cout << x << endl; cout << y << endl; printf("first 4 bytes are: %i %i %i %i\n", texImage[0], texImage[1], texImage[2], texImage[3]); } GLuint testTex = 0; glGenTextures(1, &testTex); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, testTex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, x, y, 0, GL_RGBA, GL_UNSIGNED_BYTE, texImage); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); */ int x, y; unsigned char* texImage = loadImage("laser.png", &x, &y); if (texImage) { cout << "Laser texture loaded successfully!" << endl; cout << x << endl; cout << y << endl; printf("first 4 bytes are: %i %i %i %i\n", texImage[0], texImage[1], texImage[2], texImage[3]); } GLuint laserTex = 0; glGenTextures(1, &laserTex); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, laserTex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, x, y, 0, GL_RGBA, GL_UNSIGNED_BYTE, texImage); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); /* RENDERING ALGORITHM * * Create a separate vbo for each of the following things: * - points * - colors * - texture coordinates * - selected colors * - normals * - indices into a ubo that stores a model matrix for each object * * Also, make a model matrix ubo, the entirety of which will be passed to the vertex shader. * The vbo containing the correct index into the ubo (mentioned above) will be used to select * the right model matrix for each point. The index in the vbo will be the saem for all points * of any given object. * * There will be two shader programs for now, one for draing colored objects, and another for * drawing textured ones. The points, normals, and model mat ubo indices will be passed to both * shaders, while the colors vbo will only be passed to the colors shader, and the texcoords vbo * only to the texture shader. * * Right now, the currently selected object is drawn using one color (specified in the selected * colors vbo) regardless of whether it is normally rendering using colors or a texture. The selected * object is rendering by binding the selected colors vbo in place of the colors vbo and using the colors * shader. Then, the selected object is redrawn along with all other objects, but the depth buffer test * prevents the unselected version of the object from appearing on the screen. This lets me render all the * objects that use a particular shader using one glDrawArrays() call. */ map shaderBufferInfo; // TODO: Rename color_sp to ship_sp and comment out texture_sp) GLuint color_sp = loadShaderProgram("./ship.vert", "./ship.frag"); GLuint asteroid_sp = loadShaderProgram("./asteroid.vert", "./asteroid.frag"); GLuint texture_sp = loadShaderProgram("./texture.vert", "./texture.frag"); GLuint laser_sp = loadShaderProgram("./laser.vert", "./laser.frag"); shaderBufferInfo[color_sp] = BufferInfo(); shaderBufferInfo[asteroid_sp] = BufferInfo(); shaderBufferInfo[texture_sp] = BufferInfo(); shaderBufferInfo[laser_sp] = BufferInfo(); cam_pos = vec3(0.0f, 0.0f, 2.0f); float cam_yaw = 0.0f * 2.0f * 3.14159f / 360.0f; float cam_pitch = -50.0f * 2.0f * 3.14159f / 360.0f; // player ship SceneObject* ship = createShip(color_sp); objects.push_back(ship); vector::iterator obj_it; GLuint points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, model_mat_idx_vbo; initializeBuffers( &points_vbo, &colors_vbo, &selected_colors_vbo, &texcoords_vbo, &normals_vbo, &ubo, &model_mat_idx_vbo); populateBuffers(objects, shaderBufferInfo, points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, model_mat_idx_vbo, asteroid_sp); GLuint color_vao = 0; glGenVertexArrays(1, &color_vao); glBindVertexArray(color_vao); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glEnableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); // Comment these two lines out when I want to use selected colors glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, normals_vbo); glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, model_mat_idx_vbo); glVertexAttribIPointer(3, 1, GL_UNSIGNED_INT, 0, 0); GLuint asteroid_vao = 0; glGenVertexArrays(1, &asteroid_vao); glBindVertexArray(asteroid_vao); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glEnableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, normals_vbo); glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, model_mat_idx_vbo); glVertexAttribIPointer(3, 1, GL_UNSIGNED_INT, 0, 0); GLuint texture_vao = 0; glGenVertexArrays(1, &texture_vao); glBindVertexArray(texture_vao); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glEnableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, texcoords_vbo); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, normals_vbo); glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, model_mat_idx_vbo); glVertexAttribIPointer(3, 1, GL_UNSIGNED_INT, 0, 0); GLuint laser_vao = 0; glGenVertexArrays(1, &laser_vao); glBindVertexArray(laser_vao); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, texcoords_vbo); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, model_mat_idx_vbo); glVertexAttribIPointer(2, 1, GL_UNSIGNED_INT, 0, 0); float cam_speed = 1.0f; float cam_yaw_speed = 60.0f*ONE_DEG_IN_RAD; float cam_pitch_speed = 60.0f*ONE_DEG_IN_RAD; // glm::lookAt can create the view matrix // glm::perspective can create the projection matrix mat4 T = translate(mat4(1.0f), vec3(-cam_pos.x, -cam_pos.y, -cam_pos.z)); mat4 yaw_mat = rotate(mat4(1.0f), -cam_yaw, vec3(0.0f, 1.0f, 0.0f)); mat4 pitch_mat = rotate(mat4(1.0f), -cam_pitch, vec3(1.0f, 0.0f, 0.0f)); mat4 R = pitch_mat * yaw_mat; view_mat = R*T; // TODO: Create a function to construct the projection matrix // (Maybe I should just use glm::perspective, after making sure it matches what I have now) float fov = 67.0f * ONE_DEG_IN_RAD; float aspect = (float)width / (float)height; float range = tan(fov * 0.5f) * NEAR_CLIP; float Sx = NEAR_CLIP / (range * aspect); float Sy = NEAR_CLIP / range; float Sz = -(FAR_CLIP + NEAR_CLIP) / (FAR_CLIP - NEAR_CLIP); float Pz = -(2.0f * FAR_CLIP * NEAR_CLIP) / (FAR_CLIP - NEAR_CLIP); float proj_arr[] = { Sx, 0.0f, 0.0f, 0.0f, 0.0f, Sy, 0.0f, 0.0f, 0.0f, 0.0f, Sz, -1.0f, 0.0f, 0.0f, Pz, 0.0f, }; proj_mat = make_mat4(proj_arr); GLuint ub_binding_point = 0; // TODO: Replace test_loc and mat_loc with more descriptive names GLuint view_test_loc = glGetUniformLocation(color_sp, "view"); GLuint proj_test_loc = glGetUniformLocation(color_sp, "proj"); GLuint color_sp_models_ub_index = glGetUniformBlockIndex(color_sp, "models"); GLuint asteroid_view_mat_loc = glGetUniformLocation(asteroid_sp, "view"); GLuint asteroid_proj_mat_loc = glGetUniformLocation(asteroid_sp, "proj"); GLuint asteroid_sp_models_ub_index = glGetUniformBlockIndex(asteroid_sp, "models"); //GLuint asteroid_sp_hp_ub_index = glGetUniformBlockIndex(asteroid_sp, "hp_uniform"); GLuint view_mat_loc = glGetUniformLocation(texture_sp, "view"); GLuint proj_mat_loc = glGetUniformLocation(texture_sp, "proj"); GLuint texture_sp_models_ub_index = glGetUniformBlockIndex(texture_sp, "models"); GLuint laser_view_mat_loc = glGetUniformLocation(laser_sp, "view"); GLuint laser_proj_mat_loc = glGetUniformLocation(laser_sp, "proj"); GLuint laser_color_loc = glGetUniformLocation(laser_sp, "laser_color"); GLuint laser_sp_models_ub_index = glGetUniformBlockIndex(laser_sp, "models"); glUseProgram(color_sp); glUniformMatrix4fv(view_test_loc, 1, GL_FALSE, value_ptr(view_mat)); glUniformMatrix4fv(proj_test_loc, 1, GL_FALSE, value_ptr(proj_mat)); glUniformBlockBinding(color_sp, color_sp_models_ub_index, ub_binding_point); glBindBufferRange(GL_UNIFORM_BUFFER, ub_binding_point, ubo, 0, GL_MAX_UNIFORM_BLOCK_SIZE); glUseProgram(asteroid_sp); glUniformMatrix4fv(asteroid_view_mat_loc, 1, GL_FALSE, value_ptr(view_mat)); glUniformMatrix4fv(asteroid_proj_mat_loc, 1, GL_FALSE, value_ptr(proj_mat)); glUniformBlockBinding(asteroid_sp, asteroid_sp_models_ub_index, ub_binding_point); glBindBufferRange(GL_UNIFORM_BUFFER, ub_binding_point, ubo, 0, GL_MAX_UNIFORM_BLOCK_SIZE); glUseProgram(texture_sp); glUniformMatrix4fv(view_mat_loc, 1, GL_FALSE, value_ptr(view_mat)); glUniformMatrix4fv(proj_mat_loc, 1, GL_FALSE, value_ptr(proj_mat)); glUniformBlockBinding(texture_sp, texture_sp_models_ub_index, ub_binding_point); glBindBufferRange(GL_UNIFORM_BUFFER, ub_binding_point, ubo, 0, GL_MAX_UNIFORM_BLOCK_SIZE); glUseProgram(laser_sp); glUniformMatrix4fv(laser_view_mat_loc, 1, GL_FALSE, value_ptr(view_mat)); glUniformMatrix4fv(laser_proj_mat_loc, 1, GL_FALSE, value_ptr(proj_mat)); glUniform3f(laser_color_loc, 0.2f, 1.0f, 0.2f); glUniformBlockBinding(laser_sp, laser_sp_models_ub_index, ub_binding_point); glBindBufferRange(GL_UNIFORM_BUFFER, ub_binding_point, ubo, 0, GL_MAX_UNIFORM_BLOCK_SIZE); bool cam_moved = false; int frame_count = 0; double elapsed_seconds_fps = 0.0f; double elapsed_seconds_spawn = 0.0f; double previous_seconds = glfwGetTime(); // This draws wireframes. Useful for seeing separate faces and occluded objects. //glPolygonMode(GL_FRONT, GL_LINE); // disable vsync to see real framerate //glfwSwapInterval(0); State curState = STATE_MAIN_MENU; while (!glfwWindowShouldClose(window) && isRunning) { double current_seconds = glfwGetTime(); double elapsed_seconds = current_seconds - previous_seconds; previous_seconds = current_seconds; elapsed_seconds_fps += elapsed_seconds; if (elapsed_seconds_fps > 0.25f) { fps = (double)frame_count / elapsed_seconds_fps; frame_count = 0; elapsed_seconds_fps = 0.0f; } frame_count++; // Handle events clickedObject = NULL; // reset the all key states to KEY_STATE_UNCHANGED (something the GLFW key callback can never return) // so that GLFW_PRESS and GLFW_RELEASE are only detected once // TODO: Change this if we ever need to act on GLFW_REPEAT (which is when a key is held down // continuously for a period of time) fill(key_state, key_state + NUM_KEYS, KEY_STATE_UNCHANGED); glfwPollEvents(); while (!events.empty()) { switch (events.front()) { case EVENT_GO_TO_MAIN_MENU: curState = STATE_MAIN_MENU; break; case EVENT_GO_TO_GAME: curState = STATE_GAME; break; case EVENT_QUIT: isRunning = false; break; } events.pop(); } if (curState == STATE_GAME) { elapsed_seconds_spawn += elapsed_seconds; if (elapsed_seconds_spawn > 0.5f) { SceneObject* obj = createAsteroid(vec3(getRandomNum(-1.3f, 1.3f), -1.2f, getRandomNum(-5.5f, -4.5f)), asteroid_sp); addObjectToScene(obj, shaderBufferInfo, points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, model_mat_idx_vbo, asteroid_sp); elapsed_seconds_spawn -= 0.5f; } /* if (clickedObject == &objects[0]) { selectedObject = &objects[0]; } if (clickedObject == &objects[1]) { selectedObject = &objects[1]; } */ /* if (key_state[GLFW_KEY_SPACE] == GLFW_PRESS) { transformObject(objects[1], translate(mat4(1.0f), vec3(0.3f, 0.0f, 0.0f)), ubo); } if (key_down[GLFW_KEY_RIGHT]) { transformObject(objects[2], translate(mat4(1.0f), vec3(0.01f, 0.0f, 0.0f)), ubo); } if (key_down[GLFW_KEY_LEFT]) { transformObject(objects[2], translate(mat4(1.0f), vec3(-0.01f, 0.0f, 0.0f)), ubo); } */ if (key_down[GLFW_KEY_RIGHT]) { transformObject(*objects[0], translate(mat4(1.0f), vec3(0.01f, 0.0f, 0.0f)), ubo); if (leftLaser != NULL && !leftLaser->deleted) { translateLaser(leftLaser, vec3(0.01f, 0.0f, 0.0f), ubo); } if (rightLaser != NULL && !rightLaser->deleted) { translateLaser(rightLaser, vec3(0.01f, 0.0f, 0.0f), ubo); } } if (key_down[GLFW_KEY_LEFT]) { transformObject(*objects[0], translate(mat4(1.0f), vec3(-0.01f, 0.0f, 0.0f)), ubo); if (leftLaser != NULL && !leftLaser->deleted) { translateLaser(leftLaser, vec3(-0.01f, 0.0f, 0.0f), ubo); } if (rightLaser != NULL && !rightLaser->deleted) { translateLaser(rightLaser, vec3(-0.01f, 0.0f, 0.0f), ubo); } } if (key_state[GLFW_KEY_Z] == GLFW_PRESS) { vec3 offset(objects[0]->model_transform * vec4(0.0f, 0.0f, 0.0f, 1.0f)); leftLaser = createLaser(vec3(-0.21f, -1.19f, 1.76f)+offset, vec3(-0.21f, -1.19f, -3.0f)+offset, vec3(0.0f, 1.0f, 0.0f), 0.03f, laser_sp); addObjectToScene(leftLaser, shaderBufferInfo, points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, model_mat_idx_vbo, asteroid_sp); } else if (key_state[GLFW_KEY_Z] == GLFW_RELEASE) { removeObjectFromScene(*leftLaser, ubo); } if (key_state[GLFW_KEY_X] == GLFW_PRESS) { vec3 offset(objects[0]->model_transform * vec4(0.0f, 0.0f, 0.0f, 1.0f)); rightLaser = createLaser(vec3(0.21f, -1.19f, 1.76f) + offset, vec3(0.21f, -1.19f, -3.0f) + offset, vec3(0.0f, 1.0f, 0.0f), 0.03f, laser_sp); addObjectToScene(rightLaser, shaderBufferInfo, points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, model_mat_idx_vbo, asteroid_sp); } else if (key_state[GLFW_KEY_X] == GLFW_RELEASE) { removeObjectFromScene(*rightLaser, ubo); } // this code moves the asteroids for (unsigned int i = 0; i < objects.size(); i++) { if (objects[i]->type == TYPE_ASTEROID && !objects[i]->deleted) { transformObject(*objects[i], translate(mat4(1.0f), vec3(0.0f, 0.0f, 0.04f)), ubo); vec3 obj_center = vec3(view_mat * vec4(objects[i]->bounding_center, 1.0f)); if ((obj_center.z - objects[i]->bounding_radius) > -NEAR_CLIP) { removeObjectFromScene(*objects[i], ubo); } if (((Asteroid*)objects[i])->hp <= 0) { removeObjectFromScene(*objects[i], ubo); score++; } } } if (leftLaser != NULL && !leftLaser->deleted) { updateLaserTarget(leftLaser, objects, points_vbo, asteroid_sp); } if (rightLaser != NULL && !rightLaser->deleted) { updateLaserTarget(rightLaser, objects, points_vbo, asteroid_sp); } } for (vector::iterator it = effects.begin(); it != effects.end(); ) { if ((*it)->deleted || (*it)->effectedObject->deleted) { delete *it; it = effects.erase(it); } else { EffectOverTime* eot = *it; eot->effectedValue = eot->startValue + (current_seconds - eot->startTime) * eot->changePerSecond; it++; } } if (key_state[GLFW_KEY_ESCAPE] == GLFW_PRESS) { glfwSetWindowShouldClose(window, 1); } float dist = cam_speed * elapsed_seconds; if (key_down[GLFW_KEY_A]) { vec3 dir = vec3(inverse(R) * vec4(-1.0f, 0.0f, 0.0f, 1.0f)); cam_pos += dir * dist; cam_moved = true; } if (key_down[GLFW_KEY_D]) { vec3 dir = vec3(inverse(R) * vec4(1.0f, 0.0f, 0.0f, 1.0f)); cam_pos += dir * dist; cam_moved = true; } if (key_down[GLFW_KEY_W]) { vec3 dir = vec3(inverse(R) * vec4(0.0f, 0.0f, -1.0f, 1.0f)); cam_pos += dir * dist; cam_moved = true; } if (key_down[GLFW_KEY_S]) { vec3 dir = vec3(inverse(R) * vec4(0.0f, 0.0f, 1.0f, 1.0f)); cam_pos += dir * dist; cam_moved = true; } /* if (key_down[GLFW_KEY_LEFT]) { cam_yaw += cam_yaw_speed * elapsed_seconds; cam_moved = true; } if (key_down[GLFW_KEY_RIGHT]) { cam_yaw -= cam_yaw_speed * elapsed_seconds; cam_moved = true; } if (key_down[GLFW_KEY_UP]) { cam_pitch += cam_pitch_speed * elapsed_seconds; cam_moved = true; } if (key_down[GLFW_KEY_DOWN]) { cam_pitch -= cam_pitch_speed * elapsed_seconds; cam_moved = true; } */ if (cam_moved && false) { // disable camera movement T = translate(mat4(1.0f), vec3(-cam_pos.x, -cam_pos.y, -cam_pos.z)); mat4 yaw_mat = rotate(mat4(1.0f), -cam_yaw, vec3(0.0f, 1.0f, 0.0f)); mat4 pitch_mat = rotate(mat4(1.0f), -cam_pitch, vec3(1.0f, 0.0f, 0.0f)); R = pitch_mat * yaw_mat; view_mat = R * T; //printVector("cam pos", cam_pos); glUseProgram(color_sp); glUniformMatrix4fv(view_test_loc, 1, GL_FALSE, value_ptr(view_mat)); glUseProgram(texture_sp); glUniformMatrix4fv(view_mat_loc, 1, GL_FALSE, value_ptr(view_mat)); glUseProgram(laser_sp); glUniformMatrix4fv(laser_view_mat_loc, 1, GL_FALSE, value_ptr(view_mat)); cam_moved = false; } // Render scene glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); switch (curState) { case STATE_MAIN_MENU: renderMainMenu(); renderMainMenuGui(); break; case STATE_GAME: renderScene(shaderBufferInfo, color_sp, asteroid_sp, texture_sp, laser_sp, color_vao, asteroid_vao, texture_vao, laser_vao, colors_vbo, selected_colors_vbo, selectedObject); renderSceneGui(); break; } glfwSwapBuffers(window); } ImGui_ImplGlfwGL3_Shutdown(); ImGui::DestroyContext(); glfwDestroyWindow(window); glfwTerminate(); // free memory for (vector::iterator it = objects.begin(); it != objects.end(); it++) { delete *it; } return 0; } void glfw_error_callback(int error, const char* description) { gl_log_err("GLFW ERROR: code %i msg: %s\n", error, description); } void mouse_button_callback(GLFWwindow* window, int button, int action, int mods) { double mouse_x, mouse_y; glfwGetCursorPos(window, &mouse_x, &mouse_y); if (button == GLFW_MOUSE_BUTTON_LEFT && action == GLFW_PRESS) { cout << "Mouse clicked (" << mouse_x << "," << mouse_y << ")" << endl; selectedObject = NULL; float x = (2.0f*mouse_x) / width - 1.0f; float y = 1.0f - (2.0f*mouse_y) / height; cout << "x: " << x << ", y: " << y << endl; vec4 ray_clip = vec4(x, y, -1.0f, 1.0f); vec4 ray_eye = inverse(proj_mat) * ray_clip; ray_eye = vec4(vec2(ray_eye), -1.0f, 1.0f); vec4 ray_world = inverse(view_mat) * ray_eye; vec4 click_point; vec3 closest_point = vec3(0.0f, 0.0f, -FAR_CLIP); // Any valid point will be closer than the far clipping plane, so initial value to that SceneObject* closest_object = NULL; for (vector::iterator it = objects.begin(); it != objects.end(); it++) { if ((*it)->type == TYPE_LASER) continue; for (unsigned int p_idx = 0; p_idx < (*it)->points.size(); p_idx += 9) { if (faceClicked( { vec3((*it)->points[p_idx], (*it)->points[p_idx + 1], (*it)->points[p_idx + 2]), vec3((*it)->points[p_idx + 3], (*it)->points[p_idx + 4], (*it)->points[p_idx + 5]), vec3((*it)->points[p_idx + 6], (*it)->points[p_idx + 7], (*it)->points[p_idx + 8]), }, *it, ray_world, vec4(cam_pos, 1.0f), click_point )) { click_point = view_mat * click_point; if (-NEAR_CLIP >= click_point.z && click_point.z > -FAR_CLIP && click_point.z > closest_point.z) { closest_point = vec3(click_point); closest_object = *it; } } } } if (closest_object == NULL) { cout << "No object was clicked" << endl; } else { clickedObject = closest_object; cout << "Clicked object: " << clickedObject->id << endl; } } } void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods) { key_state[key] = action; // should be true for GLFW_PRESS and GLFW_REPEAT key_down[key] = (action != GLFW_RELEASE); } void APIENTRY debugGlCallback( GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam ) { string strMessage(message); // TODO: Use C++ strings directly char source_str[2048]; char type_str[2048]; char severity_str[2048]; switch (source) { case 0x8246: strcpy(source_str, "API"); break; case 0x8247: strcpy(source_str, "WINDOW_SYSTEM"); break; case 0x8248: strcpy(source_str, "SHADER_COMPILER"); break; case 0x8249: strcpy(source_str, "THIRD_PARTY"); break; case 0x824A: strcpy(source_str, "APPLICATION"); break; case 0x824B: strcpy(source_str, "OTHER"); break; default: strcpy(source_str, "undefined"); break; } switch (type) { case 0x824C: strcpy(type_str, "ERROR"); break; case 0x824D: strcpy(type_str, "DEPRECATED_BEHAVIOR"); break; case 0x824E: strcpy(type_str, "UNDEFINED_BEHAVIOR"); break; case 0x824F: strcpy(type_str, "PORTABILITY"); break; case 0x8250: strcpy(type_str, "PERFORMANCE"); break; case 0x8251: strcpy(type_str, "OTHER"); break; case 0x8268: strcpy(type_str, "MARKER"); break; case 0x8269: strcpy(type_str, "PUSH_GROUP"); break; case 0x826A: strcpy(type_str, "POP_GROUP"); break; default: strcpy(type_str, "undefined"); break; } switch (severity) { case 0x9146: strcpy(severity_str, "HIGH"); break; case 0x9147: strcpy(severity_str, "MEDIUM"); break; case 0x9148: strcpy(severity_str, "LOW"); break; case 0x826B: strcpy(severity_str, "NOTIFICATION"); break; default: strcpy(severity_str, "undefined"); break; } if (string(severity_str) != "NOTIFICATION") { cout << "OpenGL Error!!!" << endl; cout << "Source: " << string(source_str) << endl; cout << "Type: " << string(type_str) << endl; cout << "Severity: " << string(severity_str) << endl; cout << strMessage << endl; } } GLuint loadShader(GLenum type, string file) { cout << "Loading shader from file " << file << endl; ifstream shaderFile(file); GLuint shaderId = 0; if (shaderFile.is_open()) { string line, shaderString; while(getline(shaderFile, line)) { shaderString += line + "\n"; } shaderFile.close(); const char* shaderCString = shaderString.c_str(); shaderId = glCreateShader(type); glShaderSource(shaderId, 1, &shaderCString, NULL); glCompileShader(shaderId); cout << "Loaded successfully" << endl; } else { cout << "Failed to load the file" << endl; } return shaderId; } GLuint loadShaderProgram(string vertexShaderPath, string fragmentShaderPath) { GLuint vs = loadShader(GL_VERTEX_SHADER, vertexShaderPath); GLuint fs = loadShader(GL_FRAGMENT_SHADER, fragmentShaderPath); GLuint shader_program = glCreateProgram(); glAttachShader(shader_program, vs); glAttachShader(shader_program, fs); glLinkProgram(shader_program); return shader_program; } unsigned char* loadImage(string file_name, int* x, int* y) { int n; int force_channels = 4; // This forces RGBA (4 bytes per pixel) unsigned char* image_data = stbi_load(file_name.c_str(), x, y, &n, force_channels); int width_in_bytes = *x * 4; unsigned char *top = NULL; unsigned char *bottom = NULL; unsigned char temp = 0; int half_height = *y / 2; // flip image upside-down to account for OpenGL treating lower-left as (0, 0) for (int row = 0; row < half_height; row++) { top = image_data + row * width_in_bytes; bottom = image_data + (*y - row - 1) * width_in_bytes; for (int col = 0; col < width_in_bytes; col++) { temp = *top; *top = *bottom; *bottom = temp; top++; bottom++; } } if (!image_data) { fprintf(stderr, "ERROR: could not load %s\n", file_name.c_str()); } // Not Power-of-2 check if ((*x & (*x - 1)) != 0 || (*y & (*y - 1)) != 0) { fprintf(stderr, "WARNING: texture %s is not power-of-2 dimensions\n", file_name.c_str()); } return image_data; } bool faceClicked(array points, SceneObject* obj, vec4 world_ray, vec4 cam, vec4& click_point) { // LINE EQUATION: P = O + Dt // O = cam // D = ray_world // PLANE EQUATION: P dot n + d = 0 // n is the normal vector // d is the offset from the origin // Take the cross-product of two vectors on the plane to get the normal vec3 v1 = points[1] - points[0]; vec3 v2 = points[2] - points[0]; vec3 normal = vec3(v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x); vec3 local_ray = vec3(inverse(obj->model_mat) * world_ray); vec3 local_cam = vec3(inverse(obj->model_mat) * cam); local_ray = local_ray - local_cam; float d = -glm::dot(points[0], normal); float t = -(glm::dot(local_cam, normal) + d) / glm::dot(local_ray, normal); vec3 intersection = local_cam + t*local_ray; if (insideTriangle(intersection, points)) { click_point = obj->model_mat * vec4(intersection, 1.0f); return true; } else { return false; } } bool insideTriangle(vec3 p, array triangle_points) { vec3 v21 = triangle_points[1] - triangle_points[0]; vec3 v31 = triangle_points[2] - triangle_points[0]; vec3 pv1 = p - triangle_points[0]; float y = (pv1.y*v21.x - pv1.x*v21.y) / (v31.y*v21.x - v31.x*v21.y); float x = (pv1.x-y*v31.x) / v21.x; return x > 0.0f && y > 0.0f && x+y < 1.0f; } void printVector(string label, vec3& v) { cout << label << " -> (" << v.x << "," << v.y << "," << v.z << ")" << endl; } void print4DVector(string label, vec4& v) { cout << label << " -> (" << v.x << "," << v.y << "," << v.z << "," << v.w << ")" << endl; } void initObject(SceneObject* obj) { // Each objects must have at least 3 points, so the size of // the points array must be a positive multiple of 9 if (obj->points.size() == 0 || (obj->points.size() % 9) != 0) { // TODO: Maybe throw some kind of error here instead return; } obj->id = objects.size(); // currently unused obj->num_points = obj->points.size() / 3; obj->model_transform = mat4(1.0f); obj->deleted = false; obj->normals.reserve(obj->points.size()); for (unsigned int i = 0; i < obj->points.size(); i += 9) { vec3 point1 = vec3(obj->points[i], obj->points[i + 1], obj->points[i + 2]); vec3 point2 = vec3(obj->points[i + 3], obj->points[i + 4], obj->points[i + 5]); vec3 point3 = vec3(obj->points[i + 6], obj->points[i + 7], obj->points[i + 8]); vec3 normal = normalize(cross(point2 - point1, point3 - point1)); // Add the same normal for all 3 points for (int j = 0; j < 3; j++) { obj->normals.push_back(normal.x); obj->normals.push_back(normal.y); obj->normals.push_back(normal.z); } } if (obj->type != TYPE_LASER) { calculateObjectBoundingBox(obj); obj->bounding_center = vec3(obj->translate_mat * vec4(obj->bounding_center, 1.0f)); } } void addObjectToScene(SceneObject* obj, map& shaderBufferInfo, GLuint points_vbo, GLuint colors_vbo, GLuint selected_colors_vbo, GLuint texcoords_vbo, GLuint normals_vbo, GLuint ubo, GLuint model_mat_idx_vbo, GLuint asteroid_sp) { objects.push_back(obj); BufferInfo* bufferInfo = &shaderBufferInfo[obj->shader_program]; // Check if the buffers aren't large enough to fit the new object and, if so, call // populateBuffers() to resize and repopupulate them if (bufferInfo->vbo_capacity < (bufferInfo->ubo_offset + obj->num_points) || bufferInfo->ubo_capacity < (bufferInfo->ubo_offset + 1)) { if (leftLaser != NULL && leftLaser->deleted) { leftLaser = NULL; } if (rightLaser != NULL && rightLaser->deleted) { rightLaser = NULL; } populateBuffers(objects, shaderBufferInfo, points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, model_mat_idx_vbo, asteroid_sp); } else { copyObjectDataToBuffers(*objects.back(), shaderBufferInfo, points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, model_mat_idx_vbo, asteroid_sp); } } void removeObjectFromScene(SceneObject& obj, GLuint ubo) { if (!obj.deleted) { // Move the object outside the render bounds of the scene so it doesn't get rendered // TODO: Find a better way of hiding the object until the next time buffers are repopulated transformObject(obj, translate(mat4(1.0f), vec3(0.0f, 0.0f, FAR_CLIP * 1000.0f)), ubo); obj.deleted = true; } } void calculateObjectBoundingBox(SceneObject* obj) { GLfloat min_x = obj->points[0]; GLfloat max_x = obj->points[0]; GLfloat min_y = obj->points[1]; GLfloat max_y = obj->points[1]; GLfloat min_z = obj->points[2]; GLfloat max_z = obj->points[2]; // start from the second point for (unsigned int i = 3; i < obj->points.size(); i += 3) { if (min_x > obj->points[i]) { min_x = obj->points[i]; } else if (max_x < obj->points[i]) { max_x = obj->points[i]; } if (min_y > obj->points[i + 1]) { min_y = obj->points[i + 1]; } else if (max_y < obj->points[i + 1]) { max_y = obj->points[i + 1]; } if (min_z > obj->points[i + 2]) { min_z = obj->points[i + 2]; } else if (max_z < obj->points[i + 2]) { max_z = obj->points[i + 2]; } } obj->bounding_center = vec3((min_x + max_x) / 2.0f, (min_y + max_y) / 2.0f, (min_z + max_z) / 2.0f); GLfloat radius_x = max_x - obj->bounding_center.x; GLfloat radius_y = max_y - obj->bounding_center.y; GLfloat radius_z = max_z - obj->bounding_center.z; // TODO: This actually underestimates the radius. Might need to be fixed at some point. // TODO: Does not take into account any scaling in the model matrix obj->bounding_radius = radius_x; if (obj->bounding_radius < radius_y) obj->bounding_radius = radius_y; if (obj->bounding_radius < radius_z) obj->bounding_radius = radius_z; for (unsigned int i = 0; i < obj->points.size(); i += 3) { obj->points[i] -= obj->bounding_center.x; obj->points[i + 1] -= obj->bounding_center.y; obj->points[i + 2] -= obj->bounding_center.z; } obj->bounding_center = vec3(0.0f, 0.0f, 0.0f); } SceneObject* createShip(GLuint shader) { SceneObject* ship = new SceneObject(); ship->type = TYPE_SHIP; ship->shader_program = shader; ship->points = { //back -0.5f, 0.3f, 0.0f, -0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, -0.5f, 0.3f, 0.0f, 0.5f, 0.0f, 0.0f, 0.5f, 0.3f, 0.0f, // left back -0.5f, 0.3f, -2.0f, -0.5f, 0.0f, -2.0f, -0.5f, 0.0f, 0.0f, -0.5f, 0.3f, -2.0f, -0.5f, 0.0f, 0.0f, -0.5f, 0.3f, 0.0f, // right back 0.5f, 0.3f, 0.0f, 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, -2.0f, 0.5f, 0.3f, 0.0f, 0.5f, 0.0f, -2.0f, 0.5f, 0.3f, -2.0f, // left mid -0.25f, 0.3f, -3.0f, -0.25f, 0.0f, -3.0f, -0.5f, 0.0f, -2.0f, -0.25f, 0.3f, -3.0f, -0.5f, 0.0f, -2.0f, -0.5f, 0.3f, -2.0f, // right mid 0.5f, 0.3f, -2.0f, 0.5f, 0.0f, -2.0f, 0.25f, 0.0f, -3.0f, 0.5f, 0.3f, -2.0f, 0.25f, 0.0f, -3.0f, 0.25f, 0.3f, -3.0f, // left front 0.0f, 0.0f, -3.5f, -0.25f, 0.0f, -3.0f, -0.25f, 0.3f, -3.0f, // right front 0.25f, 0.3f, -3.0f, 0.25f, 0.0f, -3.0f, 0.0f, 0.0f, -3.5f, // top back -0.5f, 0.3f, -2.0f, -0.5f, 0.3f, 0.0f, 0.5f, 0.3f, 0.0f, -0.5f, 0.3f, -2.0f, 0.5f, 0.3f, 0.0f, 0.5f, 0.3f, -2.0f, // bottom back -0.5f, 0.0f, 0.0f, -0.5f, 0.0f, -2.0f, 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, -0.5f, 0.0f, -2.0f, 0.5f, 0.0f, -2.0f, // top mid -0.25f, 0.3f, -3.0f, -0.5f, 0.3f, -2.0f, 0.5f, 0.3f, -2.0f, -0.25f, 0.3f, -3.0f, 0.5f, 0.3f, -2.0f, 0.25f, 0.3f, -3.0f, // bottom mid -0.5f, 0.0f, -2.0f, -0.25f, 0.0f, -3.0f, 0.5f, 0.0f, -2.0f, 0.5f, 0.0f, -2.0f, -0.25f, 0.0f, -3.0f, 0.25f, 0.0f, -3.0f, // top front -0.25f, 0.3f, -3.0f, 0.25f, 0.3f, -3.0f, 0.0f, 0.0f, -3.5f, // bottom front 0.25f, 0.0f, -3.0f, -0.25f, 0.0f, -3.0f, 0.0f, 0.0f, -3.5f, // left wing start back -1.5f, 0.3f, 0.0f, -1.5f, 0.0f, 0.0f, -0.5f, 0.0f, 0.0f, -1.5f, 0.3f, 0.0f, -0.5f, 0.0f, 0.0f, -0.5f, 0.3f, 0.0f, // left wing start top -0.5f, 0.3f, -0.3f, -1.3f, 0.3f, -0.3f, -1.5f, 0.3f, 0.0f, -0.5f, 0.3f, -0.3f, -1.5f, 0.3f, 0.0f, -0.5f, 0.3f, 0.0f, // left wing start front -0.5f, 0.3f, -0.3f, -0.5f, 0.0f, -0.3f, -1.3f, 0.0f, -0.3f, -0.5f, 0.3f, -0.3f, -1.3f, 0.0f, -0.3f, -1.3f, 0.3f, -0.3f, // left wing start bottom -0.5f, 0.0f, 0.0f, -1.5f, 0.0f, 0.0f, -1.3f, 0.0f, -0.3f, -0.5f, 0.0f, 0.0f, -1.3f, 0.0f, -0.3f, -0.5f, 0.0f, -0.3f, // left wing end outside -1.5f, 0.3f, 0.0f, -2.2f, 0.15f, -0.8f, -1.5f, 0.0f, 0.0f, // left wing end top -1.3f, 0.3f, -0.3f, -2.2f, 0.15f, -0.8f, -1.5f, 0.3f, 0.0f, // left wing end front -1.3f, 0.0f, -0.3f, -2.2f, 0.15f, -0.8f, -1.3f, 0.3f, -0.3f, // left wing end bottom -1.5f, 0.0f, 0.0f, -2.2f, 0.15f, -0.8f, -1.3f, 0.0f, -0.3f, // right wing start back 1.5f, 0.0f, 0.0f, 1.5f, 0.3f, 0.0f, 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 1.5f, 0.3f, 0.0f, 0.5f, 0.3f, 0.0f, // right wing start top 1.3f, 0.3f, -0.3f, 0.5f, 0.3f, -0.3f, 1.5f, 0.3f, 0.0f, 1.5f, 0.3f, 0.0f, 0.5f, 0.3f, -0.3f, 0.5f, 0.3f, 0.0f, // right wing start front 0.5f, 0.0f, -0.3f, 0.5f, 0.3f, -0.3f, 1.3f, 0.0f, -0.3f, 1.3f, 0.0f, -0.3f, 0.5f, 0.3f, -0.3f, 1.3f, 0.3f, -0.3f, // right wing start bottom 1.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 1.3f, 0.0f, -0.3f, 1.3f, 0.0f, -0.3f, 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, -0.3f, // right wing end outside 2.2f, 0.15f, -0.8f, 1.5f, 0.3f, 0.0f, 1.5f, 0.0f, 0.0f, // right wing end top 2.2f, 0.15f, -0.8f, 1.3f, 0.3f, -0.3f, 1.5f, 0.3f, 0.0f, // right wing end front 2.2f, 0.15f, -0.8f, 1.3f, 0.0f, -0.3f, 1.3f, 0.3f, -0.3f, // right wing end bottom 2.2f, 0.15f, -0.8f, 1.5f, 0.0f, 0.0f, 1.3f, 0.0f, -0.3f, }; ship->colors = { 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, 0.0f, 0.0f, 0.3f, }; ship->texcoords = { 0.0f }; ship->selected_colors = { 0.0f }; mat4 T_model = translate(mat4(1.0f), vec3(0.0f, -1.2f, 1.65f)); mat4 R_model(1.0f); ship->model_base = T_model * R_model * scale(mat4(1.0f), vec3(0.1f, 0.1f, 0.1f)); ship->translate_mat = T_model; initObject(ship); return ship; } /* LASER RENDERING/POSITIONING ALGORITHM * -Draw a thin rectangle for the laser beam, using the specified width and endpoints * -Texture the beam with a grayscale partially transparent image * -In the shader, blend the image with a color to support lasers of different colors * * The flat part of the textured rectangle needs to always face the camera, so the laser's width is constant * This is done as follows: * -Determine the length of the laser based on the start and end points * -Draw a rectangle along the z-axis and rotated upwards along the y-axis, with the correct final length and width * -Rotate the beam around the z-axis by the correct angle, sot that in its final position, the flat part faces the camera * -Rotate the beam along the x-axis and then along the y-axis and then translate it to put it into its final position */ // TODO: Make the color parameter have an effect // TODO: Come up with a better way of passing the object back than copying it Laser* createLaser(vec3 start, vec3 end, vec3 color, GLfloat width, GLuint laser_sp) { Laser* obj = new Laser(); obj->type = TYPE_LASER; obj->targetAsteroid = NULL; obj->shader_program = laser_sp; vec3 ray = end - start; float length = glm::length(ray); obj->points = { width / 2, 0.0f, -width / 2, -width / 2, 0.0f, -width / 2, -width / 2, 0.0f, 0.0f, width / 2, 0.0f, -width / 2, -width / 2, 0.0f, 0.0f, width / 2, 0.0f, 0.0f, width / 2, 0.0f, -length + width / 2, -width / 2, 0.0f, -length + width / 2, -width / 2, 0.0f, -width / 2, width / 2, 0.0f, -length + width / 2, -width / 2, 0.0f, -width / 2, width / 2, 0.0f, -width / 2, width / 2, 0.0f, -length, -width / 2, 0.0f, -length, -width / 2, 0.0f, -length + width / 2, width / 2, 0.0f, -length, -width / 2, 0.0f, -length + width / 2, width / 2, 0.0f, -length + width / 2, }; obj->texcoords = { 1.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.51f, 0.0f, 0.51f, 0.0f, 0.49f, 1.0f, 0.51f, 0.0f, 0.49f, 1.0f, 0.49f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 0.5f, 1.0f, 0.5f, }; float xAxisRotation = asin(ray.y / length); float yAxisRotation = atan2(-ray.x, -ray.z); vec3 normal(rotate(mat4(1.0f), yAxisRotation, vec3(0.0f, 1.0f, 0.0f)) * rotate(mat4(1.0f), xAxisRotation, vec3(1.0f, 0.0f, 0.0f)) * vec4(0.0f, 1.0f, 0.0f, 1.0f)); // To project point P onto line AB: // projection = A + dot(AP,AB) / dot(AB,AB) * AB vec3 projOnLaser = start + glm::dot(cam_pos-start, ray) / (length*length) * ray; vec3 laserToCam = cam_pos - projOnLaser; float zAxisRotation = -atan2(glm::dot(glm::cross(normal, laserToCam), glm::normalize(ray)), glm::dot(normal, laserToCam)); obj->model_base = rotate(mat4(1.0f), zAxisRotation, vec3(0.0f, 0.0f, 1.0f)); initObject(obj); obj->model_transform = rotate(mat4(1.0f), xAxisRotation, vec3(1.0f, 0.0f, 0.0f)) * obj->model_transform; obj->model_transform = rotate(mat4(1.0f), yAxisRotation, vec3(0.0f, 1.0f, 0.0f)) * obj->model_transform; obj->model_transform = translate(mat4(1.0f), start) * obj->model_transform; return obj; } void initializeBuffers( GLuint* points_vbo, GLuint* colors_vbo, GLuint* selected_colors_vbo, GLuint* texcoords_vbo, GLuint* normals_vbo, GLuint* ubo, GLuint* model_mat_idx_vbo) { *points_vbo = 0; glGenBuffers(1, points_vbo); *colors_vbo = 0; glGenBuffers(1, colors_vbo); *selected_colors_vbo = 0; glGenBuffers(1, selected_colors_vbo); *texcoords_vbo = 0; glGenBuffers(1, texcoords_vbo); *normals_vbo = 0; glGenBuffers(1, normals_vbo); *ubo = 0; glGenBuffers(1, ubo); *model_mat_idx_vbo = 0; glGenBuffers(1, model_mat_idx_vbo); } void populateBuffers(vector& objects, map& shaderBufferInfo, GLuint points_vbo, GLuint colors_vbo, GLuint selected_colors_vbo, GLuint texcoords_vbo, GLuint normals_vbo, GLuint ubo, GLuint ubo_idx_vbo, GLuint asteroid_sp) { GLsizeiptr num_points = 0; GLsizeiptr num_objects = 0; map shaderCounts; map shaderUboCounts; vector::iterator it; /* Find all shaders that need to be used and the number of objects and * number of points for each shader. Construct a map from shader id to count * of points being drawn using that shader (for thw model matrix ubo, we * need object counts instead). These will be used to get offsets into the * vertex buffer for each shader. */ for (it = objects.begin(); it != objects.end(); ) { if ((*it)->deleted) { delete *it; it = objects.erase(it); } else { num_points += (*it)->num_points; num_objects++; if (shaderCounts.count((*it)->shader_program) == 0) { shaderCounts[(*it)->shader_program] = (*it)->num_points; shaderUboCounts[(*it)->shader_program] = 1; } else { shaderCounts[(*it)->shader_program] += (*it)->num_points; shaderUboCounts[(*it)->shader_program]++; } it++; } } // double the buffer sizes to leave room for new objects num_points *= 2; num_objects *= 2; map::iterator shaderIt; unsigned int lastShaderCount = 0; unsigned int lastShaderUboCount = 0; /* * The counts calculated above can be used to get the starting offset of * each shader in the vertex buffer. Create a map of base offsets to mark * where the data for the first object using a given shader begins. Also, * create a map of current offsets to mark where to copy data for the next * object being added. */ for (shaderIt = shaderCounts.begin(); shaderIt != shaderCounts.end(); shaderIt++) { // When populating the buffers, leave as much empty space as space taken up by existing objects // to allow new objects to be added without immediately having to resize the buffers shaderBufferInfo[shaderIt->first].vbo_base = lastShaderCount * 2; shaderBufferInfo[shaderIt->first].ubo_base = lastShaderUboCount * 2; /* cout << "shader: " << shaderIt->first << endl; cout << "point counts: " << shaderCounts[shaderIt->first] << endl; cout << "object counts: " << shaderUboCounts[shaderIt->first] << endl; cout << "vbo_base: " << shaderBufferInfo[shaderIt->first].vbo_base << endl; cout << "ubo_base: " << shaderBufferInfo[shaderIt->first].ubo_base << endl; */ shaderBufferInfo[shaderIt->first].vbo_offset = 0; shaderBufferInfo[shaderIt->first].ubo_offset = 0; shaderBufferInfo[shaderIt->first].vbo_capacity = shaderCounts[shaderIt->first] * 2; shaderBufferInfo[shaderIt->first].ubo_capacity = shaderUboCounts[shaderIt->first] * 2; lastShaderCount += shaderCounts[shaderIt->first]; lastShaderUboCount += shaderUboCounts[shaderIt->first]; } // Allocate all the buffers using the counts calculated above glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glBufferData(GL_ARRAY_BUFFER, num_points * sizeof(GLfloat) * 3, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); glBufferData(GL_ARRAY_BUFFER, num_points * sizeof(GLfloat) * 3, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, selected_colors_vbo); glBufferData(GL_ARRAY_BUFFER, num_points * sizeof(GLfloat) * 3, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, texcoords_vbo); glBufferData(GL_ARRAY_BUFFER, num_points * sizeof(GLfloat) * 2, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, normals_vbo); glBufferData(GL_ARRAY_BUFFER, num_points * sizeof(GLfloat) * 3, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, ubo); glBufferData(GL_UNIFORM_BUFFER, num_objects * sizeof(mat4), NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, ubo_idx_vbo); glBufferData(GL_ARRAY_BUFFER, num_points * sizeof(GLuint), NULL, GL_DYNAMIC_DRAW); for (it = objects.begin(); it != objects.end(); it++) { copyObjectDataToBuffers(**it, shaderBufferInfo, points_vbo, colors_vbo, selected_colors_vbo, texcoords_vbo, normals_vbo, ubo, ubo_idx_vbo, asteroid_sp); } } void copyObjectDataToBuffers(SceneObject& obj, map& shaderBufferInfo, GLuint points_vbo, GLuint colors_vbo, GLuint selected_colors_vbo, GLuint texcoords_vbo, GLuint normals_vbo, GLuint ubo, GLuint model_mat_idx_vbo, GLuint asteroid_sp) { BufferInfo* bufferInfo = &shaderBufferInfo[obj.shader_program]; obj.vertex_vbo_offset = bufferInfo->vbo_base + bufferInfo->vbo_offset; obj.ubo_offset = bufferInfo->ubo_base + bufferInfo->ubo_offset; glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glBufferSubData(GL_ARRAY_BUFFER, obj.vertex_vbo_offset * sizeof(GLfloat) * 3, obj.points.size() * sizeof(GLfloat), &obj.points[0]); glBindBuffer(GL_ARRAY_BUFFER, texcoords_vbo); glBufferSubData(GL_ARRAY_BUFFER, obj.vertex_vbo_offset * sizeof(GLfloat) * 2, obj.texcoords.size() * sizeof(GLfloat), &obj.texcoords[0]); glBindBuffer(GL_ARRAY_BUFFER, model_mat_idx_vbo); for (unsigned int i = 0; i < obj.num_points; i++) { glBufferSubData(GL_ARRAY_BUFFER, (obj.vertex_vbo_offset + i) * sizeof(GLuint), sizeof(GLuint), &obj.ubo_offset); } if (obj.type != TYPE_LASER) { glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); glBufferSubData(GL_ARRAY_BUFFER, obj.vertex_vbo_offset * sizeof(GLfloat) * 3, obj.colors.size() * sizeof(GLfloat), &obj.colors[0]); glBindBuffer(GL_ARRAY_BUFFER, selected_colors_vbo); glBufferSubData(GL_ARRAY_BUFFER, obj.vertex_vbo_offset * sizeof(GLfloat) * 3, obj.selected_colors.size() * sizeof(GLfloat), &obj.selected_colors[0]); glBindBuffer(GL_ARRAY_BUFFER, normals_vbo); glBufferSubData(GL_ARRAY_BUFFER, obj.vertex_vbo_offset * sizeof(GLfloat) * 3, obj.normals.size() * sizeof(GLfloat), &obj.normals[0]); } obj.model_mat = obj.model_transform * obj.model_base; glBindBuffer(GL_UNIFORM_BUFFER, ubo); glBufferSubData(GL_UNIFORM_BUFFER, obj.ubo_offset * sizeof(mat4), sizeof(mat4), value_ptr(obj.model_mat)); if (obj.type == TYPE_ASTEROID) { glUseProgram(asteroid_sp); ostringstream oss; oss << "hp[" << obj.ubo_offset << "]"; glUniform1f(glGetUniformLocation(asteroid_sp, oss.str().c_str()), ((Asteroid*)&obj)->hp); } bufferInfo->vbo_offset += obj.num_points; bufferInfo->ubo_offset++; } void transformObject(SceneObject& obj, const mat4& transform, GLuint ubo) { if (obj.deleted) return; obj.model_transform = transform * obj.model_transform; obj.model_mat = obj.model_transform * obj.model_base; obj.bounding_center = vec3(transform * vec4(obj.bounding_center, 1.0f)); glBindBuffer(GL_UNIFORM_BUFFER, ubo); glBufferSubData(GL_UNIFORM_BUFFER, obj.ubo_offset * sizeof(mat4), sizeof(mat4), value_ptr(obj.model_mat)); } void translateLaser(Laser* laser, const vec3& translation, GLuint ubo) { // TODO: A lot of the values calculated here can be calculated once and saved when the laser is created, // and then re-used here vec3 start = vec3(laser->model_transform * vec4(0.0f, 0.0f, 0.0f, 1.0f)); vec3 end = vec3(laser->model_transform * vec4(0.0f, 0.0f, laser->points[38], 1.0f)); vec3 ray = end - start; float length = glm::length(ray); float xAxisRotation = asin(ray.y / length); float yAxisRotation = atan2(-ray.x, -ray.z); vec3 normal(rotate(mat4(1.0f), yAxisRotation, vec3(0.0f, 1.0f, 0.0f)) * rotate(mat4(1.0f), xAxisRotation, vec3(1.0f, 0.0f, 0.0f)) * vec4(0.0f, 1.0f, 0.0f, 1.0f)); // To project point P onto line AB: // projection = A + dot(AP,AB) / dot(AB,AB) * AB vec3 projOnLaser = start + glm::dot(cam_pos - start, ray) / (length*length) * ray; vec3 laserToCam = cam_pos - projOnLaser; float zAxisRotation = -atan2(glm::dot(glm::cross(normal, laserToCam), glm::normalize(ray)), glm::dot(normal, laserToCam)); laser->model_base = rotate(mat4(1.0f), zAxisRotation, vec3(0.0f, 0.0f, 1.0f)); transformObject(*laser, translate(mat4(1.0f), translation), ubo); } void updateLaserTarget(Laser* laser, vector& objects, GLuint points_vbo, GLuint asteroid_sp) { // TODO: A lot of the values calculated here can be calculated once and saved when the laser is created, // and then re-used here vec3 start = vec3(laser->model_transform * vec4(0.0f, 0.0f, 0.0f, 1.0f)); vec3 end = vec3(laser->model_transform * vec4(0.0f, 0.0f, laser->points[2] + laser->points[20], 1.0f)); vec3 intersection(0.0f), closestIntersection(0.0f); Asteroid* closestAsteroid = NULL; for (vector::iterator it = objects.begin(); it != objects.end(); it++) { if ((*it)->type == TYPE_ASTEROID && !(*it)->deleted && getLaserAndAsteroidIntersection(start, end, **it, intersection)) { // TODO: Implement a more generic algorithm for testing the closest object by getting the distance between the points if (closestAsteroid == NULL || intersection.z > closestIntersection.z) { // TODO: At this point, find the real intersection of the laser with one of the asteroid's sides closestAsteroid = (Asteroid*)*it; closestIntersection = intersection; } } } float width = laser->points[0] - laser->points[2]; if (laser->targetAsteroid != closestAsteroid) { if (laser->targetAsteroid != NULL) { if (laser == leftLaser) { leftLaserEffect->deleted = true; } else if (laser == rightLaser) { rightLaserEffect->deleted = true; } } EffectOverTime* eot = NULL; if (closestAsteroid != NULL) { eot = new EffectOverTime(closestAsteroid->hp, -20.0f, closestAsteroid); effects.push_back(eot); } if (laser == leftLaser) { leftLaserEffect = eot; } else if (laser == rightLaser) { rightLaserEffect = eot; } } laser->targetAsteroid = closestAsteroid; float length = 5.24f; // I think this was to make sure the laser went past the end of the screen if (closestAsteroid != NULL) { length = glm::length(closestIntersection - start); // TODO: Find a more generic way of updating the laser hp than in updateLaserTarget glUseProgram(asteroid_sp); ostringstream oss; oss << "hp[" << closestAsteroid->ubo_offset << "]"; glUniform1f(glGetUniformLocation(asteroid_sp, oss.str().c_str()), closestAsteroid->hp); } laser->points[20] = -length + width / 2; laser->points[23] = -length + width / 2; laser->points[29] = -length + width / 2; laser->points[38] = -length; laser->points[41] = -length; laser->points[44] = -length + width / 2; laser->points[47] = -length; laser->points[50] = -length + width / 2; laser->points[53] = -length + width / 2; glBindBuffer(GL_ARRAY_BUFFER, points_vbo); glBufferSubData(GL_ARRAY_BUFFER, laser->vertex_vbo_offset * sizeof(GLfloat) * 3, laser->points.size() * sizeof(GLfloat), &laser->points[0]); } bool getLaserAndAsteroidIntersection(vec3& start, vec3& end, SceneObject& asteroid, vec3& intersection) { /* ### LINE EQUATIONS ### x = x1 + u * (x2 - x1) y = y1 + u * (y2 - y1) z = z1 + u * (z2 - z1) ### SPHERE EQUATION ### (x - x3)^2 + (y - y3)^2 + (z - z3)^2 = r^2 ### QUADRATIC EQUATION TO SOLVE ### a*u^2 + b*u + c = 0 WHERE THE CONSTANTS ARE a = (x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2 b = 2*( (x2 - x1)*(x1 - x3) + (y2 - y1)*(y1 - y3) + (z2 - z1)*(z1 - z3) ) c = x3^2 + y3^2 + z3^2 + x1^2 + y1^2 + z1^2 - 2(x3*x1 + y3*y1 + z3*z1) - r^2 u = (-b +- sqrt(b^2 - 4*a*c)) / 2a If the value under the root is >= 0, we got an intersection If the value > 0, there are two solutions. Take the one closer to 0, since that's the one closer to the laser start point */ vec3& center = asteroid.bounding_center; float a = pow(end.x-start.x, 2) + pow(end.y-start.y, 2) + pow(end.z-start.z, 2); float b = 2*((start.x-end.x)*(start.x-center.x) + (end.y-start.y)*(start.y-center.y) + (end.z-start.z)*(start.z-center.z)); float c = pow(center.x, 2) + pow(center.y, 2) + pow(center.z, 2) + pow(start.x, 2) + pow(start.y, 2) + pow(start.z, 2) - 2*(center.x*start.x + center.y*start.y + center.z*start.z) - pow(asteroid.bounding_radius, 2); float discriminant = pow(b, 2) - 4*a*c; if (discriminant >= 0.0f) { // In this case, the negative root will always give the point closer to the laser start point float u = (-b - sqrt(discriminant)) / (2 * a); // Check that the intersection is within the line segment corresponding to the laser if (0.0f <= u && u <= 1.0f) { intersection = start + u * (end - start); return true; } } return false; } void renderScene(map& shaderBufferInfo, GLuint color_sp, GLuint asteroid_sp, GLuint texture_sp, GLuint laser_sp, GLuint color_vao, GLuint asteroid_vao, GLuint texture_vao, GLuint laser_vao, GLuint colors_vbo, GLuint selected_colors_vbo, SceneObject* selectedObject) { glUseProgram(color_sp); glBindVertexArray(color_vao); /* if (selectedObject != NULL) { glBindBuffer(GL_ARRAY_BUFFER, selected_colors_vbo); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0); glDrawArrays(GL_TRIANGLES, selectedObject->vertex_vbo_offset, selectedObject->num_points); } */ // Uncomment this code when I want to use selected colors again // glBindBuffer(GL_ARRAY_BUFFER, colors_vbo); // glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, 0); glDrawArrays(GL_TRIANGLES, shaderBufferInfo[color_sp].vbo_base, shaderBufferInfo[color_sp].vbo_offset); glUseProgram(asteroid_sp); glBindVertexArray(asteroid_vao); glDrawArrays(GL_TRIANGLES, shaderBufferInfo[asteroid_sp].vbo_base, shaderBufferInfo[asteroid_sp].vbo_offset); glUseProgram(texture_sp); glBindVertexArray(texture_vao); glDrawArrays(GL_TRIANGLES, shaderBufferInfo[texture_sp].vbo_base, shaderBufferInfo[texture_sp].vbo_offset); glEnable(GL_BLEND); glUseProgram(laser_sp); glBindVertexArray(laser_vao); glDrawArrays(GL_TRIANGLES, shaderBufferInfo[laser_sp].vbo_base, shaderBufferInfo[laser_sp].vbo_offset); glDisable(GL_BLEND); } void renderSceneGui() { ImGui_ImplGlfwGL3_NewFrame(); // 1. Show a simple window. // Tip: if we don't call ImGui::Begin()/ImGui::End() the widgets automatically appears in a window called "Debug". /* { static float f = 0.0f; static int counter = 0; ImGui::Text("Hello, world!"); // Display some text (you can use a format string too) ImGui::SliderFloat("float", &f, 0.0f, 1.0f); // Edit 1 float using a slider from 0.0f to 1.0f ImGui::ColorEdit3("clear color", (float*)&clear_color); // Edit 3 floats representing a color ImGui::Checkbox("Demo Window", &show_demo_window); // Edit bools storing our windows open/close state ImGui::Checkbox("Another Window", &show_another_window); if (ImGui::Button("Button")) // Buttons return true when clicked (NB: most widgets return true when edited/activated) counter++; ImGui::SameLine(); ImGui::Text("counter = %d", counter); ImGui::Text("Application average %.3f ms/frame (%.1f FPS)", 1000.0f / ImGui::GetIO().Framerate, ImGui::GetIO().Framerate); } */ stringstream ssScore, ssFps; ssScore << "Score: " << score; ssFps << "FPS: " << fps; { ImGui::SetNextWindowSize(ImVec2(95, 46), ImGuiCond_Once); ImGui::SetNextWindowPos(ImVec2(10, 50), ImGuiCond_Once); ImGui::Begin("WndStats", NULL, ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoMove); ImGui::Text(ssScore.str().c_str()); ImGui::Text(ssFps.str().c_str()); ImGui::End(); } { ImGui::SetNextWindowPos(ImVec2(380, 10), ImGuiCond_Once); ImGui::SetNextWindowSize(ImVec2(250, 35), ImGuiCond_Once); ImGui::Begin("WndMenubar", NULL, ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoMove); ImGui::InvisibleButton("", ImVec2(155, 18)); ImGui::SameLine(); if (ImGui::Button("Main Menu")) { events.push(EVENT_GO_TO_MAIN_MENU); } ImGui::End(); } ImGui::Render(); ImGui_ImplGlfwGL3_RenderDrawData(ImGui::GetDrawData()); } void renderMainMenu() { } void renderMainMenuGui() { ImGui_ImplGlfwGL3_NewFrame(); { int padding = 4; ImGui::SetNextWindowPos(ImVec2(-padding, -padding), ImGuiCond_Once); ImGui::SetNextWindowSize(ImVec2(width + 2 * padding, height + 2 * padding), ImGuiCond_Once); ImGui::Begin("WndMain", NULL, ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoMove); ImGui::InvisibleButton("", ImVec2(10, 80)); ImGui::InvisibleButton("", ImVec2(285, 18)); ImGui::SameLine(); if (ImGui::Button("New Game")) { events.push(EVENT_GO_TO_GAME); } ImGui::InvisibleButton("", ImVec2(10, 15)); ImGui::InvisibleButton("", ImVec2(300, 18)); ImGui::SameLine(); if (ImGui::Button("Quit")) { events.push(EVENT_QUIT); } ImGui::End(); } ImGui::Render(); ImGui_ImplGlfwGL3_RenderDrawData(ImGui::GetDrawData()); } Asteroid* createAsteroid(vec3 pos, GLuint shader) { Asteroid* obj = new Asteroid(); obj->type = TYPE_ASTEROID; obj->hp = 10.0f; obj->shader_program = shader; obj->points = { // front 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, // top 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, // bottom 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, // back 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, // right 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, // left -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, }; obj->colors = { // front 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, // top 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, // bottom 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, // back 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, // right 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, // left 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, }; obj->texcoords = { 0.0f }; obj->selected_colors = { 0.0f }; mat4 T = translate(mat4(1.0f), pos); mat4 R = rotate(mat4(1.0f), 60.0f * (float)ONE_DEG_IN_RAD, vec3(1.0f, 1.0f, -1.0f)); obj->model_base = T * R * scale(mat4(1.0f), vec3(0.1f, 0.1f, 0.1f)); obj->translate_mat = T; initObject(obj); // This accounts for the scaling in model_base. // Dividing by 8 instead of 10 since the bounding radius algorithm // under-calculates the true value. // TODO: Once the intersection check with the sides of the asteroid is done, // this can be removed. obj->bounding_radius /= 8.0f; return obj; } float getRandomNum(float low, float high) { return low + ((float)rand()/RAND_MAX) * (high-low); }