/* DESIGN GUIDE -I should store multiple buffers (e.g. vertex and index buffers) in the same VkBuffer and use offsets into it -For specifying a separate transform for each model, I can specify a descriptorCount > ` in the ubo layout binding -Name class instance variables that are pointers (and possibly other pointer variables as well) like pVarName */ #include "game-gui-glfw.hpp" #include "game-gui-sdl.hpp" //#define _USE_MATH_DEFINES // Will be needed when/if I need to # include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" // TODO: Probably switch to SDL_image #include #include #include #include #include #include #include #include using namespace std; // TODO: Maybe add asserts for testing const int SCREEN_WIDTH = 800; const int SCREEN_HEIGHT = 600; const int MAX_FRAMES_IN_FLIGHT = 2; #ifdef NDEBUG const bool enableValidationLayers = false; #else const bool enableValidationLayers = true; #endif const vector validationLayers = { "VK_LAYER_KHRONOS_validation" }; const vector deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; struct QueueFamilyIndices { optional graphicsFamily; optional presentFamily; bool isComplete() { return graphicsFamily.has_value() && presentFamily.has_value(); } }; struct SwapChainSupportDetails { VkSurfaceCapabilitiesKHR capabilities; vector formats; vector presentModes; }; struct Vertex { glm::vec3 pos; glm::vec3 color; glm::vec2 texCoord; static VkVertexInputBindingDescription getBindingDescription() { VkVertexInputBindingDescription bindingDescription = {}; bindingDescription.binding = 0; bindingDescription.stride = sizeof(Vertex); bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; return bindingDescription; } static array getAttributeDescriptions() { array attributeDescriptions = {}; attributeDescriptions[0].binding = 0; attributeDescriptions[0].location = 0; attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[0].offset = offsetof(Vertex, pos); attributeDescriptions[1].binding = 0; attributeDescriptions[1].location = 1; attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[1].offset = offsetof(Vertex, color); attributeDescriptions[2].binding = 0; attributeDescriptions[2].location = 2; attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT; attributeDescriptions[2].offset = offsetof(Vertex, texCoord); return attributeDescriptions; } }; struct UniformBufferObject { alignas(16) glm::mat4 model; alignas(16) glm::mat4 view; alignas(16) glm::mat4 proj; }; const vector vertices = { {{-0.5f, -0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}, {0.0f, 1.0f}}, {{ 0.5f, -0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}, {1.0f, 1.0f}}, {{ 0.5f, 0.5f, -0.5f}, {0.0f, 0.0f, 1.0f}, {1.0f, 0.0f}}, {{-0.5f, 0.5f, -0.5f}, {1.0f, 1.0f, 1.0f}, {0.0f, 0.0f}}, {{-0.5f, -0.5f, 0.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 1.0f}}, {{ 0.5f, -0.5f, 0.0f}, {0.0f, 1.0f, 0.0f}, {1.0f, 1.0f}}, {{ 0.5f, 0.5f, 0.0f}, {0.0f, 0.0f, 1.0f}, {1.0f, 0.0f}}, {{-0.5f, 0.5f, 0.0f}, {1.0f, 1.0f, 1.0f}, {0.0f, 0.0f}}, {{-1.0f, 1.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 1.0f}}, {{ 1.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {1.0f, 1.0f}}, {{ 1.0f, -1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}, {1.0f, 0.0f}}, {{-1.0f, -1.0f, 0.0f}, {1.0f, 1.0f, 1.0f}, {0.0f, 0.0f}} }; const vector indices = { 0, 1, 2, 2, 3, 0, 4, 5, 6, 6, 7, 4, 8, 9, 10, 10, 11, 8 }; VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) { auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT"); if (func != nullptr) { return func(instance, pCreateInfo, pAllocator, pDebugMessenger); } else { return VK_ERROR_EXTENSION_NOT_PRESENT; } } void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) { auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT"); if (func != nullptr) { func(instance, debugMessenger, pAllocator); } } class VulkanGame { public: void run() { if (initWindow() == RTWO_ERROR) { return; } initVulkan(); mainLoop(); cleanup(); } private: GameGui* gui = new GameGui_SDL(); SDL_Window* window = nullptr; // TODO: Come up with more descriptive names for these SDL_Renderer* gRenderer = nullptr; SDL_Texture* uiOverlay = nullptr; TTF_Font* gFont = nullptr; SDL_Texture* uiText = nullptr; SDL_Texture* uiImage = nullptr; VkInstance instance; VkDebugUtilsMessengerEXT debugMessenger; VkSurfaceKHR surface; VkPhysicalDevice physicalDevice = VK_NULL_HANDLE; VkDevice device; VkQueue graphicsQueue; VkQueue presentQueue; VkSwapchainKHR swapChain; vector swapChainImages; VkFormat swapChainImageFormat; VkExtent2D swapChainExtent; vector swapChainImageViews; vector swapChainFramebuffers; VkRenderPass renderPass; VkDescriptorSetLayout descriptorSetLayout; VkPipelineLayout pipelineLayout; VkPipeline graphicsPipeline; VkDescriptorPool descriptorPool; vector descriptorSets; VkCommandPool commandPool; VkImage depthImage; VkDeviceMemory depthImageMemory; VkImageView depthImageView; VkImage textureImage; VkDeviceMemory textureImageMemory; VkImageView textureImageView; VkImage overlayImage; VkDeviceMemory overlayImageMemory; VkImageView overlayImageView; VkImage sdlOverlayImage; VkDeviceMemory sdlOverlayImageMemory; VkImageView sdlOverlayImageView; VkSampler textureSampler; VkBuffer vertexBuffer; VkDeviceMemory vertexBufferMemory; VkBuffer indexBuffer; VkDeviceMemory indexBufferMemory; vector uniformBuffers; vector uniformBuffersMemory; vector commandBuffers; vector imageAvailableSemaphores; vector renderFinishedSemaphores; vector inFlightFences; size_t currentFrame = 0; bool framebufferResized = false; // TODO: Make make some more initi functions, or call this initUI if the // amount of things initialized here keeps growing bool initWindow() { // TODO: Put all fonts, textures, and images in the assets folder if (gui->Init() == RTWO_ERROR) { cout << "UI library could not be initialized!" << endl; cout << SDL_GetError() << endl; return RTWO_ERROR; } cout << "GUI init succeeded" << endl; window = (SDL_Window*) gui->CreateWindow("Vulkan Game", SCREEN_WIDTH, SCREEN_HEIGHT); if (window == nullptr) { cout << "Window could not be created!" << endl; return RTWO_ERROR; } // Might need SDL_RENDERER_TARGETTEXTURE to create the SDL view texture I want to show in // a vulkan quad gRenderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC); if (gRenderer == nullptr) { cout << "Renderer could not be created! SDL Error: " << SDL_GetError() << endl; return RTWO_ERROR; } uiOverlay = SDL_CreateTexture(gRenderer, SDL_PIXELFORMAT_RGBA8888, SDL_TEXTUREACCESS_STREAMING, SCREEN_WIDTH, SCREEN_HEIGHT); if (uiOverlay == nullptr) { cout << "Unable to create blank texture! SDL Error: " << SDL_GetError() << endl; } if (SDL_SetTextureBlendMode(uiOverlay, SDL_BLENDMODE_BLEND) != 0) { cout << "Unable to set texture blend mode! SDL Error: " << SDL_GetError() << endl; } gFont = TTF_OpenFont("fonts/lazy.ttf", 28); if (gFont == nullptr) { cout << "Failed to load lazy font! SDL_ttf Error: " << TTF_GetError() << endl; return RTWO_ERROR; } SDL_Color textColor = { 0, 0, 0 }; SDL_Surface* textSurface = TTF_RenderText_Solid(gFont, "Great sucess!", textColor); if (textSurface == nullptr) { cout << "Unable to render text surface! SDL_ttf Error: " << TTF_GetError() << endl; return RTWO_ERROR; } uiText = SDL_CreateTextureFromSurface(gRenderer, textSurface); if (uiText == nullptr) { cout << "Unable to create texture from rendered text! SDL Error: " << SDL_GetError() << endl; SDL_FreeSurface(textSurface); return RTWO_ERROR; } SDL_FreeSurface(textSurface); // TODO: Load a PNG instead SDL_Surface* uiImageSurface = SDL_LoadBMP("assets/images/spaceship.bmp"); if (uiImageSurface == nullptr) { cout << "Unable to load image " << "spaceship.bmp" << "! SDL Error: " << SDL_GetError() << endl; return RTWO_ERROR; } uiImage = SDL_CreateTextureFromSurface(gRenderer, uiImageSurface); if (uiImage == nullptr) { cout << "Unable to create texture from BMP surface! SDL Error: " << SDL_GetError() << endl; SDL_FreeSurface(uiImageSurface); return RTWO_ERROR; } SDL_FreeSurface(uiImageSurface); return RTWO_SUCCESS; } void initVulkan() { createInstance(); setupDebugMessenger(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); createSwapChain(); createImageViews(); createRenderPass(); createDescriptorSetLayout(); createGraphicsPipeline(); createCommandPool(); createDepthResources(); createFramebuffers(); createImageResources("textures/texture.jpg", textureImage, textureImageMemory, textureImageView); createImageResourcesFromSDLTexture(uiOverlay, sdlOverlayImage, sdlOverlayImageMemory, sdlOverlayImageView); createTextureSampler(); createVertexBuffer(); createIndexBuffer(); createUniformBuffers(); createDescriptorPool(); createDescriptorSets(); createCommandBuffers(); createSyncObjects(); } void createInstance() { if (enableValidationLayers && !checkValidationLayerSupport()) { throw runtime_error("validation layers requested, but not available!"); } VkApplicationInfo appInfo = {}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "Vulkan Game"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "No Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; VkInstanceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; vector extensions = getRequiredExtensions(); createInfo.enabledExtensionCount = static_cast(extensions.size()); createInfo.ppEnabledExtensionNames = extensions.data(); cout << endl << "Extensions:" << endl; for (const char* extensionName : extensions) { cout << extensionName << endl; } cout << endl; VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo; if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); populateDebugMessengerCreateInfo(debugCreateInfo); createInfo.pNext = &debugCreateInfo; } else { createInfo.enabledLayerCount = 0; createInfo.pNext = nullptr; } if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) { throw runtime_error("failed to create instance!"); } } bool checkValidationLayerSupport() { uint32_t layerCount; vkEnumerateInstanceLayerProperties(&layerCount, nullptr); vector availableLayers(layerCount); vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char* layerName : validationLayers) { bool layerFound = false; for (const auto& layerProperties : availableLayers) { if (strcmp(layerName, layerProperties.layerName) == 0) { layerFound = true; break; } } if (!layerFound) { return false; } } return true; } vector getRequiredExtensions() { vector extensions = gui->GetRequiredExtensions(); if (enableValidationLayers) { extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); } return extensions; } void setupDebugMessenger() { if (!enableValidationLayers) return; VkDebugUtilsMessengerCreateInfoEXT createInfo; populateDebugMessengerCreateInfo(createInfo); if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) { throw runtime_error("failed to set up debug messenger!"); } } void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) { createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; createInfo.pfnUserCallback = debugCallback; } void createSurface() { if (gui->CreateVulkanSurface(instance, &surface) == RTWO_ERROR) { throw runtime_error("failed to create window surface!"); } } void pickPhysicalDevice() { uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) { throw runtime_error("failed to find GPUs with Vulkan support!"); } vector devices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); cout << endl << "Graphics cards:" << endl; for (const VkPhysicalDevice& device : devices) { if (isDeviceSuitable(device)) { physicalDevice = device; break; } } cout << endl; if (physicalDevice == VK_NULL_HANDLE) { throw runtime_error("failed to find a suitable GPU!"); } } bool isDeviceSuitable(VkPhysicalDevice device) { VkPhysicalDeviceProperties deviceProperties; vkGetPhysicalDeviceProperties(device, &deviceProperties); cout << "Device: " << deviceProperties.deviceName << endl; QueueFamilyIndices indices = findQueueFamilies(device); bool extensionsSupported = checkDeviceExtensionSupport(device); bool swapChainAdequate = false; if (extensionsSupported) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty(); } VkPhysicalDeviceFeatures supportedFeatures; vkGetPhysicalDeviceFeatures(device, &supportedFeatures); return indices.isComplete() && extensionsSupported && swapChainAdequate && supportedFeatures.samplerAnisotropy; } bool checkDeviceExtensionSupport(VkPhysicalDevice device) { uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data()); set requiredExtensions(deviceExtensions.begin(), deviceExtensions.end()); for (const auto& extension : availableExtensions) { requiredExtensions.erase(extension.extensionName); } return requiredExtensions.empty(); } void createLogicalDevice() { QueueFamilyIndices indices = findQueueFamilies(physicalDevice); vector queueCreateInfos; set uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()}; float queuePriority = 1.0f; for (uint32_t queueFamily : uniqueQueueFamilies) { VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } VkPhysicalDeviceFeatures deviceFeatures = {}; deviceFeatures.samplerAnisotropy = VK_TRUE; VkDeviceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.queueCreateInfoCount = static_cast(queueCreateInfos.size()); createInfo.pQueueCreateInfos = queueCreateInfos.data(); createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = static_cast(deviceExtensions.size()); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); // These fields are ignored by up-to-date Vulkan implementations, // but it's a good idea to set them for backwards compatibility if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) { throw runtime_error("failed to create logical device!"); } vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue); vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue); } void createSwapChain() { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice); VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes); VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities); uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1; if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) { imageCount = swapChainSupport.capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = surface; createInfo.minImageCount = imageCount; createInfo.imageFormat = surfaceFormat.format; createInfo.imageColorSpace = surfaceFormat.colorSpace; createInfo.imageExtent = extent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; QueueFamilyIndices indices = findQueueFamilies(physicalDevice); uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()}; if (indices.graphicsFamily != indices.presentFamily) { createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; createInfo.queueFamilyIndexCount = 2; createInfo.pQueueFamilyIndices = queueFamilyIndices; } else { createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.queueFamilyIndexCount = 0; createInfo.pQueueFamilyIndices = nullptr; } createInfo.preTransform = swapChainSupport.capabilities.currentTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; createInfo.oldSwapchain = VK_NULL_HANDLE; if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) { throw runtime_error("failed to create swap chain!"); } vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr); swapChainImages.resize(imageCount); vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data()); swapChainImageFormat = surfaceFormat.format; swapChainExtent = extent; } SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) { SwapChainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr); if (formatCount != 0) { details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr); if (presentModeCount != 0) { details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data()); } return details; } VkSurfaceFormatKHR chooseSwapSurfaceFormat(const vector& availableFormats) { for (const auto& availableFormat : availableFormats) { if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { return availableFormat; } } return availableFormats[0]; } VkPresentModeKHR chooseSwapPresentMode(const vector& availablePresentModes) { VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR; for (const auto& availablePresentMode : availablePresentModes) { if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) { return availablePresentMode; } else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) { bestMode = availablePresentMode; } } return bestMode; } VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) { if (capabilities.currentExtent.width != numeric_limits::max()) { return capabilities.currentExtent; } else { int width, height; gui->GetWindowSize(&width, &height); VkExtent2D actualExtent = { static_cast(width), static_cast(height) }; actualExtent.width = max(capabilities.minImageExtent.width, min(capabilities.maxImageExtent.width, actualExtent.width)); actualExtent.height = max(capabilities.minImageExtent.height, min(capabilities.maxImageExtent.height, actualExtent.height)); return actualExtent; } } void createImageViews() { swapChainImageViews.resize(swapChainImages.size()); for (size_t i = 0; i < swapChainImages.size(); i++) { swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT); } } void createRenderPass() { VkAttachmentDescription colorAttachment = {}; colorAttachment.format = swapChainImageFormat; colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference colorAttachmentRef = {}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentDescription depthAttachment = {}; depthAttachment.format = findDepthFormat(); depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT; depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference depthAttachmentRef = {}; depthAttachmentRef.attachment = 1; depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorAttachmentRef; subpass.pDepthStencilAttachment = &depthAttachmentRef; VkSubpassDependency dependency = {}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; dependency.dstSubpass = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; array attachments = { colorAttachment, depthAttachment }; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = static_cast(attachments.size()); renderPassInfo.pAttachments = attachments.data(); renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; renderPassInfo.dependencyCount = 1; renderPassInfo.pDependencies = &dependency; if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) { throw runtime_error("failed to create render pass!"); } } void createDescriptorSetLayout() { VkDescriptorSetLayoutBinding uboLayoutBinding = {}; uboLayoutBinding.binding = 0; uboLayoutBinding.descriptorCount = 1; uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; uboLayoutBinding.pImmutableSamplers = nullptr; VkDescriptorSetLayoutBinding samplerLayoutBinding = {}; samplerLayoutBinding.binding = 1; samplerLayoutBinding.descriptorCount = 1; samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; samplerLayoutBinding.pImmutableSamplers = nullptr; samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; VkDescriptorSetLayoutBinding overlaySamplerLayoutBinding = {}; overlaySamplerLayoutBinding.binding = 2; overlaySamplerLayoutBinding.descriptorCount = 1; overlaySamplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; overlaySamplerLayoutBinding.pImmutableSamplers = nullptr; overlaySamplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; array bindings = { uboLayoutBinding, samplerLayoutBinding, overlaySamplerLayoutBinding }; VkDescriptorSetLayoutCreateInfo layoutInfo = {}; layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; layoutInfo.bindingCount = static_cast(bindings.size()); layoutInfo.pBindings = bindings.data(); if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &descriptorSetLayout) != VK_SUCCESS) { throw runtime_error("failed to create descriptor set layout!"); } } void createGraphicsPipeline() { auto vertShaderCode = readFile("shaders/vert.spv"); auto fragShaderCode = readFile("shaders/frag.spv"); VkShaderModule vertShaderModule = createShaderModule(vertShaderCode); VkShaderModule fragShaderModule = createShaderModule(fragShaderCode); VkPipelineShaderStageCreateInfo vertShaderStageInfo = {}; vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertShaderStageInfo.module = vertShaderModule; vertShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragShaderStageInfo = {}; fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragShaderStageInfo.module = fragShaderModule; fragShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo }; VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; auto bindingDescription = Vertex::getBindingDescription(); auto attributeDescriptions = Vertex::getAttributeDescriptions(); vertexInputInfo.vertexBindingDescriptionCount = 1; vertexInputInfo.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; inputAssembly.primitiveRestartEnable = VK_FALSE; VkViewport viewport = {}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = (float) swapChainExtent.width; viewport.height = (float) swapChainExtent.height; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; VkRect2D scissor = {}; scissor.offset = { 0, 0 }; scissor.extent = swapChainExtent; VkPipelineViewportStateCreateInfo viewportState = {}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.pViewports = &viewport; viewportState.scissorCount = 1; viewportState.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo rasterizer = {}; rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizer.depthClampEnable = VK_FALSE; rasterizer.rasterizerDiscardEnable = VK_FALSE; rasterizer.polygonMode = VK_POLYGON_MODE_FILL; rasterizer.lineWidth = 1.0f; rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rasterizer.depthBiasEnable = VK_FALSE; VkPipelineMultisampleStateCreateInfo multisampling = {}; multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampling.sampleShadingEnable = VK_FALSE; multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; VkPipelineColorBlendAttachmentState colorBlendAttachment = {}; colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; colorBlendAttachment.blendEnable = VK_TRUE; colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; VkPipelineColorBlendStateCreateInfo colorBlending = {}; colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlending.logicOpEnable = VK_FALSE; colorBlending.logicOp = VK_LOGIC_OP_COPY; colorBlending.attachmentCount = 1; colorBlending.pAttachments = &colorBlendAttachment; colorBlending.blendConstants[0] = 0.0f; colorBlending.blendConstants[1] = 0.0f; colorBlending.blendConstants[2] = 0.0f; colorBlending.blendConstants[3] = 0.0f; VkPipelineDepthStencilStateCreateInfo depthStencil = {}; depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; depthStencil.depthTestEnable = VK_TRUE; depthStencil.depthWriteEnable = VK_TRUE; depthStencil.depthCompareOp = VK_COMPARE_OP_LESS; depthStencil.depthBoundsTestEnable = VK_FALSE; depthStencil.minDepthBounds = 0.0f; depthStencil.maxDepthBounds = 1.0f; depthStencil.stencilTestEnable = VK_FALSE; depthStencil.front = {}; depthStencil.back = {}; VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutInfo.setLayoutCount = 1; pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout; pipelineLayoutInfo.pushConstantRangeCount = 0; if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) { throw runtime_error("failed to create pipeline layout!"); } VkGraphicsPipelineCreateInfo pipelineInfo = {}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = shaderStages; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &inputAssembly; pipelineInfo.pViewportState = &viewportState; pipelineInfo.pRasterizationState = &rasterizer; pipelineInfo.pMultisampleState = &multisampling; pipelineInfo.pDepthStencilState = &depthStencil; pipelineInfo.pColorBlendState = &colorBlending; pipelineInfo.pDynamicState = nullptr; pipelineInfo.layout = pipelineLayout; pipelineInfo.renderPass = renderPass; pipelineInfo.subpass = 0; pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; pipelineInfo.basePipelineIndex = -1; if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) { throw runtime_error("failed to create graphics pipeline!"); } vkDestroyShaderModule(device, vertShaderModule, nullptr); vkDestroyShaderModule(device, fragShaderModule, nullptr); } VkShaderModule createShaderModule(const vector& code) { VkShaderModuleCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; createInfo.codeSize = code.size(); createInfo.pCode = reinterpret_cast(code.data()); VkShaderModule shaderModule; if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) { throw runtime_error("failed to create shader module!"); } return shaderModule; } void createFramebuffers() { swapChainFramebuffers.resize(swapChainImageViews.size()); for (size_t i = 0; i < swapChainImageViews.size(); i++) { array attachments = { swapChainImageViews[i], depthImageView }; VkFramebufferCreateInfo framebufferInfo = {}; framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebufferInfo.renderPass = renderPass; framebufferInfo.attachmentCount = static_cast(attachments.size()); framebufferInfo.pAttachments = attachments.data(); framebufferInfo.width = swapChainExtent.width; framebufferInfo.height = swapChainExtent.height; framebufferInfo.layers = 1; if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) { throw runtime_error("failed to create framebuffer!"); } } } void createCommandPool() { QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice); VkCommandPoolCreateInfo poolInfo = {}; poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value(); poolInfo.flags = 0; if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) { throw runtime_error("failed to create graphics command pool!"); } } QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) { QueueFamilyIndices indices; uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); int i = 0; for (const auto& queueFamily : queueFamilies) { if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) { indices.graphicsFamily = i; } VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport); if (queueFamily.queueCount > 0 && presentSupport) { indices.presentFamily = i; } if (indices.isComplete()) { break; } i++; } return indices; } void createDepthResources() { VkFormat depthFormat = findDepthFormat(); createImage(swapChainExtent.width, swapChainExtent.height, depthFormat, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, depthImage, depthImageMemory); depthImageView = createImageView(depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT); transitionImageLayout(depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); } VkFormat findDepthFormat() { return findSupportedFormat( { VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT }, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT ); } VkFormat findSupportedFormat(const vector& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) { for (VkFormat format : candidates) { VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props); if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) { return format; } else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) { return format; } } throw runtime_error("failed to find supported format!"); } bool hasStencilComponent(VkFormat format) { return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT; } void createImageResources(string filename, VkImage& image, VkDeviceMemory& imageMemory, VkImageView& view) { int texWidth, texHeight, texChannels; stbi_uc* pixels = stbi_load(filename.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha); VkDeviceSize imageSize = texWidth * texHeight * 4; if (!pixels) { throw runtime_error("failed to load texture image!"); } VkBuffer stagingBuffer; VkDeviceMemory stagingBufferMemory; createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory); void* data; vkMapMemory(device, stagingBufferMemory, 0, imageSize, 0, &data); memcpy(data, pixels, static_cast(imageSize)); vkUnmapMemory(device, stagingBufferMemory); stbi_image_free(pixels); createImage(texWidth, texHeight, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, image, imageMemory); transitionImageLayout(image, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); copyBufferToImage(stagingBuffer, image, static_cast(texWidth), static_cast(texHeight)); transitionImageLayout(image, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); vkDestroyBuffer(device, stagingBuffer, nullptr); vkFreeMemory(device, stagingBufferMemory, nullptr); view = createImageView(image, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT); } void createImageResourcesFromSDLTexture(SDL_Texture* texture, VkImage& image, VkDeviceMemory& imageMemory, VkImageView& view) { int a, w, h; // I only need this here for the width and height, which are constants, so just use those instead SDL_QueryTexture(texture, nullptr, &a, &w, &h); //cout << "TEXTURE INFO" << endl; //cout << "w: " << w << endl; //cout << "h: " << h << endl; createImage(w, h, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, image, imageMemory); view = createImageView(image, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT); } void populateImageFromSDLTexture(SDL_Texture* texture, VkImage& image) { int a, w, h, pitch; SDL_QueryTexture(texture, nullptr, &a, &w, &h); VkDeviceSize imageSize = w * h * 4; unsigned char* pixels = new unsigned char[imageSize]; SDL_RenderReadPixels(gRenderer, nullptr, SDL_PIXELFORMAT_ABGR8888, pixels, w * 4); VkBuffer stagingBuffer; VkDeviceMemory stagingBufferMemory; createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, stagingBuffer, stagingBufferMemory); void* data; vkMapMemory(device, stagingBufferMemory, 0, VK_WHOLE_SIZE, 0, &data); memcpy(data, pixels, static_cast(imageSize)); VkMappedMemoryRange mappedMemoryRange = {}; mappedMemoryRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; mappedMemoryRange.memory = stagingBufferMemory; mappedMemoryRange.offset = 0; mappedMemoryRange.size = VK_WHOLE_SIZE; // TODO: Should probably check that the function succeeded vkFlushMappedMemoryRanges(device, 1, &mappedMemoryRange); vkUnmapMemory(device, stagingBufferMemory); transitionImageLayout(image, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); copyBufferToImage(stagingBuffer, image, static_cast(w), static_cast(h)); transitionImageLayout(image, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); vkDestroyBuffer(device, stagingBuffer, nullptr); vkFreeMemory(device, stagingBufferMemory, nullptr); } void createImage(uint32_t width, uint32_t height, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) { VkImageCreateInfo imageInfo = {}; imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; imageInfo.imageType = VK_IMAGE_TYPE_2D; imageInfo.extent.width = width; imageInfo.extent.height = height; imageInfo.extent.depth = 1; imageInfo.mipLevels = 1; imageInfo.arrayLayers = 1; imageInfo.format = format; imageInfo.tiling = tiling; imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageInfo.usage = usage; imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; if (vkCreateImage(device, &imageInfo, nullptr, &image) != VK_SUCCESS) { throw runtime_error("failed to create image!"); } VkMemoryRequirements memRequirements; vkGetImageMemoryRequirements(device, image, &memRequirements); VkMemoryAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.allocationSize = memRequirements.size; allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties); if (vkAllocateMemory(device, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) { throw runtime_error("failed to allocate image memory!"); } vkBindImageMemory(device, image, imageMemory, 0); } void transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout) { VkCommandBuffer commandBuffer = beginSingleTimeCommands(); VkImageMemoryBarrier barrier = {}; barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.oldLayout = oldLayout; barrier.newLayout = newLayout; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.image = image; if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) { barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; if (hasStencilComponent(format)) { barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; } } else { barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; } barrier.subresourceRange.baseMipLevel = 0; barrier.subresourceRange.levelCount = 1; barrier.subresourceRange.baseArrayLayer = 0; barrier.subresourceRange.layerCount = 1; VkPipelineStageFlags sourceStage; VkPipelineStageFlags destinationStage; if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) { barrier.srcAccessMask = 0; barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT; } else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT; destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; } else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) { barrier.srcAccessMask = 0; barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT; } else { throw invalid_argument("unsupported layout transition!"); } vkCmdPipelineBarrier( commandBuffer, sourceStage, destinationStage, 0, 0, nullptr, 0, nullptr, 1, &barrier ); endSingleTimeCommands(commandBuffer); } void copyBufferToImage(VkBuffer buffer, VkImage image, uint32_t width, uint32_t height) { VkCommandBuffer commandBuffer = beginSingleTimeCommands(); VkBufferImageCopy region = {}; region.bufferOffset = 0; region.bufferRowLength = 0; region.bufferImageHeight = 0; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.mipLevel = 0; region.imageSubresource.baseArrayLayer = 0; region.imageSubresource.layerCount = 1; region.imageOffset = { 0, 0, 0 }; region.imageExtent = { width, height, 1 }; vkCmdCopyBufferToImage( commandBuffer, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion ); endSingleTimeCommands(commandBuffer); } VkImageView createImageView(VkImage image, VkFormat format, VkImageAspectFlags aspectFlags) { VkImageViewCreateInfo viewInfo = {}; viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; viewInfo.image = image; viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = format; viewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; viewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; viewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; viewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; viewInfo.subresourceRange.aspectMask = aspectFlags; viewInfo.subresourceRange.baseMipLevel = 0; viewInfo.subresourceRange.levelCount = 1; viewInfo.subresourceRange.baseArrayLayer = 0; viewInfo.subresourceRange.layerCount = 1; VkImageView imageView; if (vkCreateImageView(device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) { throw runtime_error("failed to create texture image view!"); } return imageView; } void createTextureSampler() { VkSamplerCreateInfo samplerInfo = {}; samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.anisotropyEnable = VK_TRUE; samplerInfo.maxAnisotropy = 16; samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK; samplerInfo.unnormalizedCoordinates = VK_FALSE; samplerInfo.compareEnable = VK_FALSE; samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.mipLodBias = 0.0f; samplerInfo.minLod = 0.0f; samplerInfo.maxLod = 0.0f; if (vkCreateSampler(device, &samplerInfo, nullptr, &textureSampler) != VK_SUCCESS) { throw runtime_error("failed to create texture sampler!"); } } void createVertexBuffer() { VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size(); VkBuffer stagingBuffer; VkDeviceMemory stagingBufferMemory; createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory); void* data; vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data); memcpy(data, vertices.data(), (size_t) bufferSize); vkUnmapMemory(device, stagingBufferMemory); createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory); copyBuffer(stagingBuffer, vertexBuffer, bufferSize); vkDestroyBuffer(device, stagingBuffer, nullptr); vkFreeMemory(device, stagingBufferMemory, nullptr); } void createIndexBuffer() { VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size(); VkBuffer stagingBuffer; VkDeviceMemory stagingBufferMemory; createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory); void* data; vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data); memcpy(data, indices.data(), (size_t) bufferSize); vkUnmapMemory(device, stagingBufferMemory); createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory); copyBuffer(stagingBuffer, indexBuffer, bufferSize); vkDestroyBuffer(device, stagingBuffer, nullptr); vkFreeMemory(device, stagingBufferMemory, nullptr); } void createUniformBuffers() { VkDeviceSize bufferSize = sizeof(UniformBufferObject); uniformBuffers.resize(swapChainImages.size()); uniformBuffersMemory.resize(swapChainImages.size()); for (size_t i = 0; i < swapChainImages.size(); i++) { createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, uniformBuffers[i], uniformBuffersMemory[i]); } } void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) { VkBufferCreateInfo bufferInfo = {}; bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferInfo.size = size; bufferInfo.usage = usage; bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) { throw runtime_error("failed to create buffer!"); } VkMemoryRequirements memRequirements; vkGetBufferMemoryRequirements(device, buffer, &memRequirements); VkMemoryAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.allocationSize = memRequirements.size; allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties); if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) { throw runtime_error("failed to allocate buffer memory!"); } vkBindBufferMemory(device, buffer, bufferMemory, 0); } void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) { VkCommandBuffer commandBuffer = beginSingleTimeCommands(); VkBufferCopy copyRegion = {}; copyRegion.size = size; vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, ©Region); endSingleTimeCommands(commandBuffer); } VkCommandBuffer beginSingleTimeCommands() { VkCommandBufferAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandPool = commandPool; allocInfo.commandBufferCount = 1; VkCommandBuffer commandBuffer; vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer); VkCommandBufferBeginInfo beginInfo = {}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; vkBeginCommandBuffer(commandBuffer, &beginInfo); return commandBuffer; } void endSingleTimeCommands(VkCommandBuffer commandBuffer) { vkEndCommandBuffer(commandBuffer); VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffer; vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); vkQueueWaitIdle(graphicsQueue); vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); } uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) { VkPhysicalDeviceMemoryProperties memProperties; vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties); for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) { if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } throw runtime_error("failed to find suitable memory type!"); } void createDescriptorPool() { array poolSizes = {}; poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; poolSizes[0].descriptorCount = static_cast(swapChainImages.size()); poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; poolSizes[1].descriptorCount = static_cast(swapChainImages.size()); poolSizes[2].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; poolSizes[2].descriptorCount = static_cast(swapChainImages.size()); VkDescriptorPoolCreateInfo poolInfo = {}; poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; poolInfo.poolSizeCount = static_cast(poolSizes.size()); poolInfo.pPoolSizes = poolSizes.data(); poolInfo.maxSets = static_cast(swapChainImages.size()); if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) { throw runtime_error("failed to create descriptor pool!"); } } void createDescriptorSets() { vector layouts(swapChainImages.size(), descriptorSetLayout); VkDescriptorSetAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; allocInfo.descriptorPool = descriptorPool; allocInfo.descriptorSetCount = static_cast(swapChainImages.size()); allocInfo.pSetLayouts = layouts.data(); descriptorSets.resize(swapChainImages.size()); if (vkAllocateDescriptorSets(device, &allocInfo, descriptorSets.data()) != VK_SUCCESS) { throw runtime_error("failed to allocate descriptor sets!"); } for (size_t i = 0; i < swapChainImages.size(); i++) { VkDescriptorBufferInfo bufferInfo = {}; bufferInfo.buffer = uniformBuffers[i]; bufferInfo.offset = 0; bufferInfo.range = sizeof(UniformBufferObject); VkDescriptorImageInfo imageInfo = {}; imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imageInfo.imageView = textureImageView; imageInfo.sampler = textureSampler; VkDescriptorImageInfo overlayImageInfo = {}; overlayImageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; overlayImageInfo.imageView = sdlOverlayImageView; overlayImageInfo.sampler = textureSampler; array descriptorWrites = {}; descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; descriptorWrites[0].dstSet = descriptorSets[i]; descriptorWrites[0].dstBinding = 0; descriptorWrites[0].dstArrayElement = 0; descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; descriptorWrites[0].descriptorCount = 1; descriptorWrites[0].pBufferInfo = &bufferInfo; descriptorWrites[0].pImageInfo = nullptr; descriptorWrites[0].pTexelBufferView = nullptr; descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; descriptorWrites[1].dstSet = descriptorSets[i]; descriptorWrites[1].dstBinding = 1; descriptorWrites[1].dstArrayElement = 0; descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; descriptorWrites[1].descriptorCount = 1; descriptorWrites[1].pBufferInfo = nullptr; descriptorWrites[1].pImageInfo = &imageInfo; descriptorWrites[1].pTexelBufferView = nullptr; descriptorWrites[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; descriptorWrites[2].dstSet = descriptorSets[i]; descriptorWrites[2].dstBinding = 2; descriptorWrites[2].dstArrayElement = 0; descriptorWrites[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; descriptorWrites[2].descriptorCount = 1; descriptorWrites[2].pBufferInfo = nullptr; descriptorWrites[2].pImageInfo = &overlayImageInfo; descriptorWrites[2].pTexelBufferView = nullptr; vkUpdateDescriptorSets(device, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); } } void createCommandBuffers() { commandBuffers.resize(swapChainFramebuffers.size()); VkCommandBufferAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.commandPool = commandPool; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandBufferCount = (uint32_t) commandBuffers.size(); if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) { throw runtime_error("failed to allocate command buffers!"); } for (size_t i = 0; i < commandBuffers.size(); i++) { VkCommandBufferBeginInfo beginInfo = {}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; beginInfo.pInheritanceInfo = nullptr; if (vkBeginCommandBuffer(commandBuffers[i], &beginInfo) != VK_SUCCESS) { throw runtime_error("failed to begin recording command buffer!"); } VkRenderPassBeginInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassInfo.renderPass = renderPass; renderPassInfo.framebuffer = swapChainFramebuffers[i]; renderPassInfo.renderArea.offset = { 0, 0 }; renderPassInfo.renderArea.extent = swapChainExtent; array clearValues = {}; clearValues[0].color = { 0.0f, 0.0f, 0.0f, 1.0f }; clearValues[1].depthStencil = { 1.0f, 0 }; renderPassInfo.clearValueCount = static_cast(clearValues.size()); renderPassInfo.pClearValues = clearValues.data(); vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); VkBuffer vertexBuffers[] = { vertexBuffer }; VkDeviceSize offsets[] = { 0 }; vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16); vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets[i], 0, nullptr); vkCmdDrawIndexed(commandBuffers[i], static_cast(indices.size()), 1, 0, 0, 0); vkCmdEndRenderPass(commandBuffers[i]); if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) { throw runtime_error("failed to record command buffer!"); } } } void createSyncObjects() { imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT); renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT); inFlightFences.resize(MAX_FRAMES_IN_FLIGHT); VkSemaphoreCreateInfo semaphoreInfo = {}; semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkFenceCreateInfo fenceInfo = {}; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS || vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS || vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) { throw runtime_error("failed to create synchronization objects for a frame!"); } } } void mainLoop() { // TODO: Create some generic event-handling functions in game-gui-* SDL_Event e; bool quit = false; while (!quit) { while (SDL_PollEvent(&e)) { if (e.type == SDL_QUIT) { quit = true; } if (e.type == SDL_KEYDOWN) { quit = true; } if (e.type == SDL_MOUSEBUTTONDOWN) { quit = true; } if (e.type == SDL_WINDOWEVENT) { if (e.window.event == SDL_WINDOWEVENT_SIZE_CHANGED) { framebufferResized = true; } else if (e.window.event == SDL_WINDOWEVENT_MINIMIZED) { framebufferResized = true; } } } drawUI(); drawFrame(); } vkDeviceWaitIdle(device); } void drawFrame() { vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, numeric_limits::max()); uint32_t imageIndex; VkResult result = vkAcquireNextImageKHR(device, swapChain, numeric_limits::max(), imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); if (result == VK_ERROR_OUT_OF_DATE_KHR) { recreateSwapChain(); return; } else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) { throw runtime_error("failed to acquire swap chain image!"); } updateUniformBuffer(imageIndex); VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] }; VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffers[imageIndex]; VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] }; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = signalSemaphores; vkResetFences(device, 1, &inFlightFences[currentFrame]); if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) { throw runtime_error("failed to submit draw command buffer!"); } VkPresentInfoKHR presentInfo = {}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = signalSemaphores; VkSwapchainKHR swapChains[] = { swapChain }; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapChains; presentInfo.pImageIndices = &imageIndex; presentInfo.pResults = nullptr; result = vkQueuePresentKHR(presentQueue, &presentInfo); if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || framebufferResized) { framebufferResized = false; recreateSwapChain(); } else if (result != VK_SUCCESS) { throw runtime_error("failed to present swap chain image!"); } currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT; currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT; } void drawUI() { // TODO: Since I currently don't use any other render targets, // I may as well set this once before the render loop SDL_SetRenderTarget(gRenderer, uiOverlay); SDL_SetRenderDrawColor(gRenderer, 0x00, 0x9F, 0x9F, 0xFF); SDL_RenderClear(gRenderer); SDL_Rect rect; rect = {280, 220, 100, 100}; SDL_SetRenderDrawColor(gRenderer, 0xFF, 0x00, 0x00, 0xFF); SDL_RenderFillRect(gRenderer, &rect); SDL_SetRenderDrawColor(gRenderer, 0x00, 0x9F, 0x9F, 0xFF); rect = {10, 10, 0, 0}; SDL_QueryTexture(uiText, nullptr, nullptr, &(rect.w), &(rect.h)); SDL_RenderCopy(gRenderer, uiText, nullptr, &rect); rect = {10, 80, 0, 0}; SDL_QueryTexture(uiImage, nullptr, nullptr, &(rect.w), &(rect.h)); SDL_RenderCopy(gRenderer, uiImage, nullptr, &rect); SDL_SetRenderDrawColor(gRenderer, 0xFF, 0x00, 0x00, 0xFF); SDL_RenderDrawLine(gRenderer, 50, 5, 150, 500); populateImageFromSDLTexture(uiOverlay, sdlOverlayImage); } void updateUniformBuffer(uint32_t currentImage) { static auto startTime = chrono::high_resolution_clock::now(); auto currentTime = chrono::high_resolution_clock::now(); float time = chrono::duration(currentTime - startTime).count(); UniformBufferObject ubo = {}; ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f)); ubo.view = glm::lookAt(glm::vec3(0.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f)); ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float)swapChainExtent.height, 0.1f, 10.0f); ubo.proj[1][1] *= -1; // flip the y-axis so that +y is up void* data; vkMapMemory(device, uniformBuffersMemory[currentImage], 0, sizeof(ubo), 0, &data); memcpy(data, &ubo, sizeof(ubo)); vkUnmapMemory(device, uniformBuffersMemory[currentImage]); } void recreateSwapChain() { int width = 0, height = 0; gui->GetWindowSize(&width, &height); while (width == 0 || height == 0 || (SDL_GetWindowFlags(window) & SDL_WINDOW_MINIMIZED) != 0) { SDL_WaitEvent(nullptr); gui->GetWindowSize(&width, &height); } vkDeviceWaitIdle(device); cleanupSwapChain(); createSwapChain(); createImageViews(); createRenderPass(); createGraphicsPipeline(); createDepthResources(); createFramebuffers(); createUniformBuffers(); createDescriptorPool(); createDescriptorSets(); createCommandBuffers(); } void cleanup() { cleanupSwapChain(); vkDestroySampler(device, textureSampler, nullptr); vkDestroyImageView(device, textureImageView, nullptr); vkDestroyImage(device, textureImage, nullptr); vkFreeMemory(device, textureImageMemory, nullptr); vkDestroyImageView(device, overlayImageView, nullptr); vkDestroyImage(device, overlayImage, nullptr); vkFreeMemory(device, overlayImageMemory, nullptr); vkDestroyImageView(device, sdlOverlayImageView, nullptr); vkDestroyImage(device, sdlOverlayImage, nullptr); vkFreeMemory(device, sdlOverlayImageMemory, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, indexBuffer, nullptr); vkFreeMemory(device, indexBufferMemory, nullptr); vkDestroyBuffer(device, vertexBuffer, nullptr); vkFreeMemory(device, vertexBufferMemory, nullptr); for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr); vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr); vkDestroyFence(device, inFlightFences[i], nullptr); } vkDestroyCommandPool(device, commandPool, nullptr); vkDestroyDevice(device, nullptr); if (enableValidationLayers) { DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr); } vkDestroySurfaceKHR(instance, surface, nullptr); vkDestroyInstance(instance, nullptr); // TODO: Check if any of these functions accept null parameters // If they do, I don't need to check for that if (uiOverlay != nullptr) { SDL_DestroyTexture(uiOverlay); uiOverlay = nullptr; } TTF_CloseFont(gFont); gFont = nullptr; if (uiText != nullptr) { SDL_DestroyTexture(uiText); uiText = nullptr; } if (uiImage != nullptr) { SDL_DestroyTexture(uiImage); uiImage = nullptr; } SDL_DestroyRenderer(gRenderer); gRenderer = nullptr; gui->DestroyWindow(); gui->Shutdown(); delete gui; } void cleanupSwapChain() { vkDestroyImageView(device, depthImageView, nullptr); vkDestroyImage(device, depthImage, nullptr); vkFreeMemory(device, depthImageMemory, nullptr); for (auto framebuffer : swapChainFramebuffers) { vkDestroyFramebuffer(device, framebuffer, nullptr); } vkFreeCommandBuffers(device, commandPool, static_cast(commandBuffers.size()), commandBuffers.data()); vkDestroyPipeline(device, graphicsPipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyRenderPass(device, renderPass, nullptr); for (auto imageView : swapChainImageViews) { vkDestroyImageView(device, imageView, nullptr); } vkDestroySwapchainKHR(device, swapChain, nullptr); for (size_t i = 0; i < swapChainImages.size(); i++) { vkDestroyBuffer(device, uniformBuffers[i], nullptr); vkFreeMemory(device, uniformBuffersMemory[i], nullptr); } vkDestroyDescriptorPool(device, descriptorPool, nullptr); } static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback( VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { cerr << "validation layer: " << pCallbackData->pMessage << endl; return VK_FALSE; } static vector readFile(const string& filename) { ifstream file(filename, ios::ate | ios::binary); if (!file.is_open()) { throw runtime_error("failed to open file!"); } size_t fileSize = (size_t) file.tellg(); vector buffer(fileSize); file.seekg(0); file.read(buffer.data(), fileSize); file.close(); return buffer; } }; int main(int argc, char* argv[]) { #ifdef NDEBUG cout << "DEBUGGING IS OFF" << endl; #else cout << "DEBUGGING IS ON" << endl; #endif cout << "Starting Vulkan game..." << endl; VulkanGame game; try { game.run(); } catch (const exception& e) { cerr << e.what() << endl; return EXIT_FAILURE; } cout << "Finished running the game" << endl; return EXIT_SUCCESS; }